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Areal data objectives

I Estimate covariate effects while accounting for
dependence

I Borrow strength across space to estimate the true mean
each region

I For example, estimating cancer rates in small counties is
hard because counts are low

I Averaging across nearby counties can give more precise
estimates
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Fake motivating example

I Say the true probability of voting GOP in county i is pi

I We poll Ni voters in county i and the number that support
GOP is Yi ∼ Binomial(Ni ,pi)

I The crude estimate, p̂i = Yi/Ni , is unstable for counties
with small Ni

I Pooling information across neighboring counties might help
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Sample proportions with Ni = 10
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Sample proportions with Ni = 1000
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Data with varying Ni
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Sample proportions
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Areal data models

We will start with the familiar model Yi = Xiβ + Zi + εi for
i ∈ {1, ...,n}

I The mean Xiβ is the same as geostatistical models

I The uncorrelated nugget error is εi ∼ Normal(0, τ2)

I The spatial term is Z = (Z1, ...,Zn)T ∼ Normal(0,Σ)

I As with geostatistics, most of our effort will be dedicated to
modeling the n × n spatial covariance matrix Σ
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Applying geostatistical models to areal data

I One option is to assign each region a spatial location and
proceed with a geostatistical analysis

I Example: si is the centroid of county i and

Σij = σ2 exp(−||si − sj ||/φ)

I This is a valid model in the sense that the covariance is
symmetric and positive definite

I It is unsatisfying for irregular regions where distance is
difficult to measure
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Conditionally autoregressive (CAR) model

I The CAR model is based on adjacency, not distance

I It is defined on the full conditional distributions

I The full conditional distribution is the distribution of Zi as if
all other Zj are known

I Let Z−i be the collection of the n − 1 other spatial terms

I Further, define Z̄i as the mean of Zj over the mi regions
that neighbor region i
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Conditionally autoregressive (CAR) model

I The CAR full conditional distribution of Zi is

Zi |Z−i ∼ Normal(ρZ̄i , σ
2/mi)

I Zi is encouraged to be close it its neighbors, inducing
spatial dependence

I The strength of spatial correlation is determined by
ρ ∈ (0,1)

I σ2 is a variance parameter

I The variance decreases with the number of neighbors
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Joint distribution

I The full conditional distributions simultaneously hold for all
n regions

I Because the full conditional distribution depends only on
neighbors, the model is also called a Gaussian Markov
Random Field (GMRF)

I It can be shown that these n full conditional distributions
are compatible

I That is, there exists a joint distribution for Z that gives
these full conditionals
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Joint distribution

I The joint distribution is MVN with mean zero and

Σ = (M− ρW)−1

I M is the diagonal matrix with diagonal elements m1, ...,mn

I ρ is the spatial dependence parameter

I W is the adjacency matrix with elements Wij

I The precision matrix Σ−1 = M− ρW is sparse
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Intrinsic CAR model

I The intrinsic CAR model sets ρ = 1 so

Zi |Z−i ∼ Normal(Z̄i , σ
2/mi)

I This gives one less parameter to estimate

I However, the corresponding covariance matrix is singular

I This implies that the joint MVN distribution is improper, i.e.,
the PDF does not integrate to one

I This complicates inference, e.g., standard MLE does not
apply
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Proper CAR model

I If ρ ∈ [0,1) the MVN distribution is proper and MLE can be
used

I Technically, ρ slightly less than zero can also be used

I The lower bound is a complicated function of W

I NOTE: ρ is not the correlation between neighbors

I NOTE: the covariance is non-stationary because
Var(Zi) = Σii varies by i
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Proper CAR model variance with σ = 1 and ρ = 0.5
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Proper CAR model correlation with ρ = 0.5
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Proper CAR model variance with σ = 1 and ρ = 0.9
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Proper CAR model correlation with ρ = 0.9
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Proper CAR model variance with σ = 1 and ρ = 0.99
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Proper CAR model correlation with ρ = 0.99
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Other CAR models

I There are other CAR models that use different weights Wij

I You can take the weights to be function of distance
between centroids

I When Wij are not binary, set mi =
∑n

j=1 Wij

I You can take the weights so that the variance is
approximately constant across space

I The Leroux parameterization is

Σ = σ2 [(1− ρ)In + ρ(M−W)]−1

which reduces to an equal-variance model if ρ = 0
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Simultaneous autoregressive (SAR) model

I The SAR model begins with n simple linear regressions

I For site i , we use the mean of neighbors as the covariate

Zi = ρZ̄i + εi

where εi ∼ Normal(0, σ2/mi) independent over i

I This is complicated because Zi appears as a response
once and in the covariate mi times

I As with the CAR model, we must solve for the induced joint
distribution
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Simultaneous autoregressive (SAR) model

I It can be shown that Z is MVN with mean zero and

Σ = σ2 (M− ρW)−1 (M− ρW)−1

I This is basically the square of the CAR covariance

I The same inferencial methods and choices of weights
apply
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Software

I There are many packages that can fit these models, but we
will use CARBayes

I CARBayes uses MCMC and is fairly easy to use

I It handles Gaussian and non-Gaussian data

I It can fit the intrinsic (they call it the Besag-York model)
and proper (Leroux) models

I It also includes extensions to multivariate data and more
sophisticated weighting schemes
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