
Bayesian Kriging - Part I
Applied Spatial Statistics
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Bayesian statistics

I Most introductory statistics courses use
classical/frequentist methods

I The main ideas are sampling distributions, confidence
intervals, p-values, etc.

I Bayesian statistics is a different way to do statistics

I These new ideas can apply to any statistical analysis,
including spatial analyses

I In this lecture we’ll introduce very basic Bayesian concepts
and apply them to a geostatistical analysis
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Advantages of Bayesian Kriging

I A key advantage of Bayesian method for spatial statistics is
in uncertainty quantification

I For example, so far we computed standard errors for β̂ and
predictions Ŷ0 using a “plug-in” estimator of the spatial
covariance parameters, θ̂

I Bayesian methods allow us to account for uncertainty in θ̂

I Bayesian computational methods are also useful for
advanced models such as non-Gaussian data

I We can also naturally bring in prior knowledge, which is
helpful for parameters that are hard to estimate like the
spatial range
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Disadvantages of Bayesian Kriging

I Bayesian methods are generally slower than MLE

I You have to specify prior distributions (we’ll discuss) which
is somewhat subjective

I In some fields, Bayesian methods are less popular than
MLE
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The Bayesian approach

I Simple example: Let Y ∈ {0,1, ...,n} be the number of
successes in n independent trials

I For example, n patients are given a vaccine and Y achieve
immunity

I The probability that a given patient achieves immunity is
θ ∈ [0,1]

I This implies the model Y |θ ∼ Binomial(n, θ)

I Our goal is to estimate the parameter θ
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The Bayesian approach

I As in classical statistics, Bayesians view the parameter θ
as fixed and unknown

I However, we express our uncertainty about it using
probability distributions

I The distribution before observing the data is the prior
distribution

I Example: Prob(θ > 0.5) = 0.6.

I Probability statements like this are intuitive (to me at least)

I This is subjective in that people may have different priors
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The Bayesian approach

I Our uncertainty about θ is changed (hopefully reduced)
after observing the data

I The Likelihood function is the distribution of the
observed data given the parameters

I This is the same likelihood function used in MLE

I Therefore, when the prior information is weak, Bayesian
and maximum likelihood estimates are similar

I Even in this case, the interpretations are different
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The Bayesian approach

I The uncertainty distribution of θ after observing the data is
the posterior distribution

I Bayes theorem provides the rule for updating the prior

p(θ|Y ) =
f (Y |θ)π(θ)

m(Y )

I In words: Posterior ∝ Likelihood·prior

I A key difference between Bayesian and frequentist
statistics is that all inference is conditional on the single
data set we observed Y
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Back to the example

I Say we observed Y = 60 successes in n = 100 trials

I The parameter θ ∈ [0,1] is the true probability of success

I In most cases we would select a prior that puts probability
on all values between 0 and 1

I If we have no relevant prior information we might use the
prior

θ ∼ Uniform(0,1)

so that all values between 0 and 1 are equally likely

I This is an example of an uninformative prior
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Posterior distribution

I The likelihood is Y |θ ∼ Binomial(n, θ)

I The uniform prior is θ ∼ Uniform(0,1)

I Then it turns out the posterior is

θ|Y ∼ Beta(Y + 1,n − Y + 1)
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Bayesian learning: Y = 60 and n = 100
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Beta prior

I The uniform prior represents prior ignorance

I To encode prior information we need a more general prior

I The beta distribution is a common prior for a parameter
that is bounded between 0 and 1

I If θ ∼ Beta(a,b) then the posterior is

θ|Y ∼ Beta(Y + a,n − Y + b)
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Prior 1: θ ∼ Beta(1,1)
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Prior 2: θ ∼ Beta(0.5,0.5)
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Prior 3: θ ∼ Beta(2,2)
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Prior 4: θ ∼ Beta(20,1)
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Plot of different beta priors
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Plots of the corresponding posteriors
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Summarizing the posterior distribution

I If there is only one parameter we can simply plot the
posterior distribution

I However, if there are many parameters the posterior is
hard to plot

I Instead we can extract means, standard deviations and
95% intervals to summarize the posterior

I These results can be put in a table and interpreted similar
to classical statistics

I For example, if a regression coefficient’s 95% posterior
interval excludes zero we can say its effect is significant
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Sensitivity to the prior

Prior Posterior
a b Mean SD P>0.5 Mean SD P>0.5
1 1 0.50 0.29 0.50 0.60 0.05 0.98

0.5 0.5 0.50 0.50 0.50 0.60 0.05 0.98
2 2 0.50 0.22 0.50 0.60 0.05 0.98
20 1 0.95 0.05 1.00 0.66 0.04 1.00
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