# Bayesian Kriging - Part I 

Applied Spatial Statistics

## Bayesian statistics

- Most introductory statistics courses use classical/frequentist methods
- The main ideas are sampling distributions, confidence intervals, $p$-values, etc.
- Bayesian statistics is a different way to do statistics
- These new ideas can apply to any statistical analysis, including spatial analyses
- In this lecture we'll introduce very basic Bayesian concepts and apply them to a geostatistical analysis


## Advantages of Bayesian Kriging

- A key advantage of Bayesian method for spatial statistics is in uncertainty quantification
- For example, so far we computed standard errors for $\hat{\boldsymbol{\beta}}$ and predictions $\hat{Y}_{0}$ using a "plug-in" estimator of the spatial covariance parameters, $\hat{\boldsymbol{\theta}}$
- Bayesian methods allow us to account for uncertainty in $\hat{\boldsymbol{\theta}}$
- Bayesian computational methods are also useful for advanced models such as non-Gaussian data
- We can also naturally bring in prior knowledge, which is helpful for parameters that are hard to estimate like the spatial range


## Disadvantages of Bayesian Kriging

- Bayesian methods are generally slower than MLE
- You have to specify prior distributions (we'll discuss) which is somewhat subjective
- In some fields, Bayesian methods are less popular than MLE


## The Bayesian approach

- Simple example: Let $Y \in\{0,1, \ldots, n\}$ be the number of successes in $n$ independent trials
- For example, $n$ patients are given a vaccine and $Y$ achieve immunity
- The probability that a given patient achieves immunity is $\theta \in[0,1]$
- This implies the model $Y \mid \theta \sim \operatorname{Binomial}(n, \theta)$
- Our goal is to estimate the parameter $\theta$


## The Bayesian approach

- As in classical statistics, Bayesians view the parameter $\theta$ as fixed and unknown
- However, we express our uncertainty about it using probability distributions
- The distribution before observing the data is the prior distribution
- Example: $\operatorname{Prob}(\theta>0.5)=0.6$.
- Probability statements like this are intuitive (to me at least)
- This is subjective in that people may have different priors


## The Bayesian approach

- Our uncertainty about $\theta$ is changed (hopefully reduced) after observing the data
- The Likelihood function is the distribution of the observed data given the parameters
- This is the same likelihood function used in MLE
- Therefore, when the prior information is weak, Bayesian and maximum likelihood estimates are similar
- Even in this case, the interpretations are different


## The Bayesian approach

- The uncertainty distribution of $\theta$ after observing the data is the posterior distribution
- Bayes theorem provides the rule for updating the prior

$$
p(\theta \mid Y)=\frac{f(Y \mid \theta) \pi(\theta)}{m(Y)}
$$

- In words: Posterior $\propto$ Likelihood•prior
- A key difference between Bayesian and frequentist statistics is that all inference is conditional on the single data set we observed $Y$


## Back to the example

- Say we observed $Y=60$ successes in $n=100$ trials
- The parameter $\theta \in[0,1]$ is the true probability of success
- In most cases we would select a prior that puts probability on all values between 0 and 1
- If we have no relevant prior information we might use the prior

$$
\theta \sim \operatorname{Uniform}(0,1)
$$

so that all values between 0 and 1 are equally likely

- This is an example of an uninformative prior


## Posterior distribution

- The likelihood is $Y \mid \theta \sim \operatorname{Binomial}(n, \theta)$
- The uniform prior is $\theta \sim \operatorname{Uniform}(0,1)$
- Then it turns out the posterior is

$$
\theta \mid Y \sim \operatorname{Beta}(Y+1, n-Y+1)
$$

## Bayesian learning: $Y=60$ and $n=100$



## Beta prior

- The uniform prior represents prior ignorance
- To encode prior information we need a more general prior
- The beta distribution is a common prior for a parameter that is bounded between 0 and 1
- If $\theta \sim \operatorname{Beta}(a, b)$ then the posterior is

$$
\theta \mid Y \sim \operatorname{Beta}(Y+a, n-Y+b)
$$

## Prior 1: $\theta \sim \operatorname{Beta}(1,1)$



## Prior 2: $\theta$ ~ $\operatorname{Beta}(0.5,0.5)$



## Prior 3: $\theta$ ~ $\operatorname{Beta}(2,2)$



## Prior 4: $\theta \sim \operatorname{Beta}(20,1)$



## Plot of different beta priors



## Plots of the corresponding posteriors



## Summarizing the posterior distribution

- If there is only one parameter we can simply plot the posterior distribution
- However, if there are many parameters the posterior is hard to plot
- Instead we can extract means, standard deviations and $95 \%$ intervals to summarize the posterior
- These results can be put in a table and interpreted similar to classical statistics
- For example, if a regression coefficient's $95 \%$ posterior interval excludes zero we can say its effect is significant


## Sensitivity to the prior

|  | Prior |  |  |  | Posterior |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | Mean | SD | $\mathrm{P}>0.5$ | Mean | SD | $\mathrm{P}>0.5$ |
| 1 | 1 | 0.50 | 0.29 | 0.50 | 0.60 | 0.05 | 0.98 |
| 0.5 | 0.5 | 0.50 | 0.50 | 0.50 | 0.60 | 0.05 | 0.98 |
| 2 | 2 | 0.50 | 0.22 | 0.50 | 0.60 | 0.05 | 0.98 |
| 20 | 1 | 0.95 | 0.05 | 1.00 | 0.66 | 0.04 | 1.00 |

