
Bayesian Kriging - Part II
Applied Spatial Statistics
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Bayesian Kriging

I In the previous lecture we introduced the basic idea of
Bayesian statistics

I We considered a few very simple cases

I In this lecture we discuss the computational methods
needed to apply Bayesian methods to harder problems

I We then conduct a Bayesian analysis of a geostatistical
model
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Bayesian computing

I When the model has many parameters it is difficult to
summarize the posterior

I For example, our spatial model had p + 1 regression
coefficients β and several covariance parameters θ

I Markov Chain Monte Carlo (MCMC) methods draw
samples from the posterior to approximate the posterior

I Say β(1)1 , ..., β
(S)
1 are S samples from the posterior of β1

I Then a histogram of the S samples, approximates the
posterior distribution

I The sample mean approximates the posterior mean, etc.
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Bayesian computing

I As with optimization, MCMC begins with an initial value for
all parameters

I It then makes draws from the posterior using Gibbs or
Metropolis-Hastings algorithms

I These samples are correlated from one sample to the next

I Ideally this chain converges to the posterior distribution

I It converges to a distribution, not a point, so the trace plot
should resemble a bar code/caterpillar
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Great convergence
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Good convergence
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Questionable convergence
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Poor convergence
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Bayesian computing

I You discard the first T samples (say T =5k) as burn-in

I The remaining S − T samples (say S=25k) are used to
approximate the posterior distribution

I There are many general packages: OpenBUGS, JAGS,
NIMBLE, STAN, INLA,...

I We will use the spBayes package in R because it is
tailored to spatial models
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Bayesian Kriging model

The exponential covariance model is the same as before,

Y ∼ Normal{Xβ,Σ(θ)}

where β = (β0, ..., βp)T and θ = (σ2, τ2, φ)

I A Bayesian analysis requires priors

I Typically, β ∼ Normal(0, c2Ip+1) for large c

I A common prior for the range is φ ∼ Uniform(0,d) where d
is the extent of the spatial domain

I For technical reasons, variances usually have inverse
gamma priors σ2, τ2 ∼ InvGamma(a,b), for small a and b

I These priors are uninformative, but if you have solid prior
information you should use it!
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Bayesian Kriging

I MCMC produces S posterior samples of the parameters β
and θ

I In Kriging we fixed these parameters at an estimated value
and made predictions

I In the Bayesian setting, we can make a prediction for each
sample, and thus account for this uncertainty

I The draws Y (1)
0 , ...,Y (S)

0 are from the posterior predictive
distribution

I The mean of these S predictions can be used as the
estimate, and the standard deviation quantifies uncertainty
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