Methods to deal with large datasets

Applied Spatial Statistics

Problems caused by large spatial datasets

- Spatial models are problematic for large sample sizes
- Covariance matrix operations increase cubicly in the sample size (see next slide)
- Fortunately, there have been major computational advances on this problem in the last ten years
- This lecture will provide a high-level overview of this work
- Your midterm exam will be a deeper dive

Covariance matrix operation times

Outline of this lecture

- Low-rank methods
- Spectral methods
- Sparse-matrix methods
- Divide-and-conquer methods

Low-rank methods

- Low-rank methods essentially turn the problem into a linear mixed model
- The covariates are constructed as functions of $\mathbf{s}=\left(s_{1}, s_{2}\right)$
- The model is $Y_{i}=\sum_{j=1}^{p} X_{j}\left(\mathbf{s}_{i}\right) \beta_{j}+\varepsilon_{i}$
- There are many choices for the covariates, $X_{j}(\mathbf{s})$
- First-order polynomial is $X_{1}(\mathbf{s})=s_{1}$ and $X_{2}(\mathbf{s})=s_{2}$
- Second-order polynomial adds $X_{3}(\mathbf{s})=s_{1}^{2}, X_{4}(\mathbf{s})=s_{2}^{2}$ and $X_{5}(\mathbf{s})=s_{1} s_{2}$

Simulated dataset

Fitted $K=5$ order polynomial trend $(p=20)$

Fitted surface with $\mathrm{K}=5$

Simulated dataset

Fitted $K=10$ order polynomial trend $(p=65)$

Fitted surface with $\mathrm{K}=10$

Simulated dataset

Fitted $K=15$ order polynomial trend $(p=135)$

Fitted surface with $\mathrm{K}=15$

Simulated dataset

Fitted $K=20$ order polynomial trend $(p=230)$

Fitted surface with $\mathrm{K}=\mathbf{2 0}$

Low-rank methods

- There are many choices for basis functions: predictive process, fixed-rank Kriging, splines, wavelets, lattice Kriging, etc
- Generally p must be near n for good prediction
- To avoid over-fitting, usually the β_{j} are given a prior distribution/complexity penalty

Spectral methods

- Spectral methods are super fast for data on a regular grid (i.e., columns and rows)
- Many large datasets are on a grid, e.g., the satellite data
- For stationary data on a 2D regular grid, the fast Fourier transform decorrelates the data
- The allows the observations to be treated as independent, which eliminates all matrix operations

Sparse matrix methods

- A sparse matrix is one with many entries equal zero
- For example, setting all correlations less than 0.01 to zero gives a sparse covariance matrix
- Sparsity can dramatically improve computation times
- The next slide shows the time to compute the determinant of sparse and non-sparse matrices

Sparse matrix methods

Sparse matrix methods

- Covariance tapering sets small correlations to zero
- There also methods that force the inverse covariance (precision) matrix to be sparse
- Veccia approximation
- Nearest neighbor Gaussian process (NNGP)
- Stochastic partial differential equation (SPDE) model

Divide-and-conquer (DnC) methods

- DnC methods split the data into smaller batches and compile the batch results
- Simple method:

1. Divide the spatial domain into quadrants
2. Compute the MLE for each quadrant
3. Take the average of the MLEs as the final estimate

- It is tricky to decide how to group the observations and deal with correlation between groups
- The next slide shows times to compute the determinant of an $n \times n$ matrix and ten $(n / 10) \times(n / 10)$ matrices

Divide-and-conquer methods

