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Problems caused by large spatial datasets

I Spatial models are problematic for large sample sizes

I Covariance matrix operations increase cubicly in the
sample size (see next slide)

I Fortunately, there have been major computational
advances on this problem in the last ten years

I This lecture will provide a high-level overview of this work

I Your midterm exam will be a deeper dive
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https://link.springer.com/article/10.1007/s13253-018-00348-w
https://link.springer.com/article/10.1007/s13253-018-00348-w


Covariance matrix operation times
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Outline of this lecture

I Low-rank methods

I Spectral methods

I Sparse-matrix methods

I Divide-and-conquer methods
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Low-rank methods

I Low-rank methods essentially turn the problem into a
linear mixed model

I The covariates are constructed as functions of s = (s1, s2)

I The model is Yi =
∑p

j=1 Xj(si)βj + εi

I There are many choices for the covariates, Xj(s)

I First-order polynomial is X1(s) = s1 and X2(s) = s2

I Second-order polynomial adds X3(s) = s2
1, X4(s) = s2

2 and
X5(s) = s1s2
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Simulated dataset
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Fitted K = 5 order polynomial trend (p = 20)
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Simulated dataset
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Fitted K = 10 order polynomial trend (p = 65)
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Simulated dataset
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Fitted K = 15 order polynomial trend (p = 135)
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Simulated dataset
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Fitted K = 20 order polynomial trend (p = 230)
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Low-rank methods

I There are many choices for basis functions: predictive
process, fixed-rank Kriging, splines, wavelets, lattice
Kriging, etc

I Generally p must be near n for good prediction

I To avoid over-fitting, usually the βj are given a prior
distribution/complexity penalty
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Spectral methods

I Spectral methods are super fast for data on a regular grid
(i.e., columns and rows)

I Many large datasets are on a grid, e.g., the satellite data

I For stationary data on a 2D regular grid, the fast Fourier
transform decorrelates the data

I The allows the observations to be treated as independent,
which eliminates all matrix operations
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https://www4.stat.ncsu.edu/~bjreich/st533/Landsat


Sparse matrix methods

I A sparse matrix is one with many entries equal zero

I For example, setting all correlations less than 0.01 to zero
gives a sparse covariance matrix

I Sparsity can dramatically improve computation times

I The next slide shows the time to compute the determinant
of sparse and non-sparse matrices
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https://www.math.uzh.ch/pages/spam/articles/spam.html


Sparse matrix methods
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Sparse matrix methods

I Covariance tapering sets small correlations to zero

I There also methods that force the inverse covariance
(precision) matrix to be sparse

I Veccia approximation

I Nearest neighbor Gaussian process (NNGP)

I Stochastic partial differential equation (SPDE) model
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Divide-and-conquer (DnC) methods

I DnC methods split the data into smaller batches and
compile the batch results

I Simple method:
1. Divide the spatial domain into quadrants
2. Compute the MLE for each quadrant
3. Take the average of the MLEs as the final estimate

I It is tricky to decide how to group the observations and
deal with correlation between groups

I The next slide shows times to compute the determinant of
an n × n matrix and ten (n/10)× (n/10) matrices
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Divide-and-conquer methods
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