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Non-Gaussian spatial data

I Thus far we have assumed the response Yi is Gaussian

I Often you can transform the data to be approximately
Gaussian, e.g., define the response as log(Yi)

I Slight deviation from normality is fine, but what if the
response is binary or a count?

I Assuming normality is clearly inappropriate and we need
new methods
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Motivating examples

I Binary example: Yi = 1 if a species is observed at si and
Yi = 0 otherwise

I Count example: Yi ∈ {0,1,2, ...} is the number of days
below freezing at si in the year 2000

I Classification example: Yi = 1 if si is a forest, Yi = 2 it’s a
desert, Yi = 3 if it’s a city

I Extreme example: Yi is the maximum one-hour
precipitation at si in 2020
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Review of the Gaussian spatial model

The standard model is model is Yi = µi + Zi + εi

I The mean is the same as linear regression

µi = β0 + Xi1β1 + ...+ Xipβp

I There are two error terms:

I Zi is spatially-correlated

I εi ∼ Normal(0, τ2) are independent across i

I Example: E(Zi) = 0 and Cov(Zi ,Zj) = σ2 exp(−dij/φ)
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Review of the Gaussian spatial model

I The joint distribution of all n observations is

Y ∼ Normal{Xβ,Σ(θ)}

where β = (β0, ..., βp) and θ = (σ2, τ2, φ)

I The likelihood as a function of β and θ

I This marginalizes out the Zi which requires taking a
complicated integral

I This trick avoids estimating the Zi , but does not work for
most non-Gaussian models
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Review of logistic regression

I Logistic regression is the most common analysis method
for a binary response, Yi ∈ {0,1}

I Denote the mean as E(Yi) = Prob(Yi = 1) = πi

I Thus Prob(Yi = 0) = 1− πi

I We want to relate the mean and the linear predictor

ηi = β0 +

p∑
j=1

Xijβj ∈ (−∞,∞)

I Setting πi = ηi is wrong because πi must be between zero
and one
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Review of logistic regression

I We insert the inverse logistic function to ensure the mean
is between zero and one,

πi = expit(ηi) =
exp(ηi)

1 + exp(ηi)

I This is equivalent to

logit(πi) = ηi = β0 +

p∑
j=1

Xijβj

where logit(π) = log{π/(1− π)} is the log odds

I Interpretation: βj is the increase in the log odds of Yi = 1 if
Xij increases by one and all other covariates are held fixed
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Review of Poisson regression

I Poisson regression is the most common analysis method
for a count response, Yi ∈ {0,1,2, ...}

I Often the count is associated with a known sampling effort
variable Ni , i.e., hours of effort or population size

I Denote the mean as E(Yi) = Niλi so λi is the expected
count per unit effort

I We want to relate the mean and the linear predictor
ηi = β0 +

∑p
j=1 Xijβj

I Setting λi = ηi is wrong because λi must be positive

8 / 22



Review of Poisson regression

I To ensure λi is positive we set λi = exp(ηi)

I This is equivalent to

log(λi) = ηi = β0 +

p∑
j=1

Xijβj

I Interpretation: The log of the mean increase by βj if Xij
increases by one and all other covariates are held fixed

I Interpretation: The mean is multiplied by exp(βj) if Xij
increases by one and all other covariates are held fixed
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Review of generalized linear models (GLMs)

I The response Yi can have any distribution: Gaussian,
binomial, Poisson, Gamma, Negative binomial, etc

I Whatever the distribution, define the mean as E(Yi) = µi

I The link function g relates the mean and linear predictor,

g(µi) = ηi = β0 +

p∑
j=1

Xijβj

I You can chose any link function that ensures that µi is in
the appropriate range for any Xi and β

10 / 22



Spatial GLMs

I A spatial GLM adds a spatial term to the linear predictor

ηi = β0 +

p∑
j=1

Xijβj + Zi

I Z is a spatial process as in the Gaussian spatial model

I For example, E(Zi) = 0 and Cov(Zi ,Zj) = σ2 exp(−dij/φ)

I Observations are assumed to be independent given the
spatial random effects, Zi

I A nugget is not included in Zi

11 / 22



Spatial logistic regression

I Assume Yi |πi ∼ Bernoulli(πi), independent over i 12

I The probability Prob(Yi = 1) = πi is modeled as

logit(πi) = β0 +

p∑
j=1

Xijβj + Zi

I The βj are interpreted just like non-spatial logistic
regression

1A Bernoulli(π) random variable is a Binomial(1, π) random variable
2If Y is the number of successes in n independent trials, each with

success probability π, then Y ∼ Binomial(n, π)
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Random draw for Z1, ...,Zn
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Plot of πi = expit(Zi)
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Realization of Yi |πi ∼ Bernoulli(πi)
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Spatial Poisson regression

I Assume Yi |λi ∼ Possion(Niλi), independent over i 3

I Ni is the known “offset term”

I The relative risk λi is modeled as

log(λi) = β0 +

p∑
j=1

Xijβj + Zi

I The βj are interpreted just like non-spatial Poisson
regression

3An equivalent model used in some packages is Yi |λi ∼ Possion(λi)
where log(λi) = log(Ni) + β0 +

∑p
j=1 Xijβj + Zi
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Random draw for Z1, ...,Zn
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Plot of λi = exp{Zi}
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Realization of Yi |λi ∼ Poisson(λi)
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Spatial Gaussian regression

I The usual Gaussian model is a special case of a GLM

I Assume Yi |ηi ∼ Normal(ηi , τ
2), independent over i

I The mean ηi is modeled as

ηi = β0 +

p∑
j=1

Xijβj + Zi

I The link function is the identify function, g(η) = η
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Spatial GLMs

I A spatial GLM assumes the responses are conditionally
independent given Zi

I The spatial terms Zi account for spatial dependence

I Even if Z has a simple correlation structure, the marginal
(over Z ) correlation of Y is hard to compute

I For example, in the logistic case we would need to be able
to compute intractable quantities like

Cov{expit(Zi),expit(Zj)}
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Computing

I As mentioned in the introduction, it is hard to compute the
joint likelihood

I For example, in the binary case, Prob(Yi = Yj = 1)

I This makes MLE tricky

I However, a Bayesian analysis with MCMC is actually
straightforward, but slow

I We’ll use spBayes, but there are other packages like
OpenBUGS, JAGS, INLA, STAN, etc
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