Spatial generalized linear models

Applied Spatial Statistics

Non-Gaussian spatial data

► Thus far we have assumed the response *Y_i* is Gaussian

- Often you can transform the data to be approximately Gaussian, e.g., define the response as log(Y_i)
- Slight deviation from normality is fine, but what if the response is binary or a count?
- Assuming normality is clearly inappropriate and we need new methods

Motivating examples

- Binary example: Y_i = 1 if a species is observed at s_i and Y_i = 0 otherwise
- Count example: Y_i ∈ {0, 1, 2, ...} is the number of days below freezing at s_i in the year 2000
- Classification example: Y_i = 1 if s_i is a forest, Y_i = 2 it's a desert, Y_i = 3 if it's a city
- Extreme example: Y_i is the maximum one-hour precipitation at s_i in 2020

Review of the Gaussian spatial model

The standard model is model is $Y_i = \mu_i + Z_i + \varepsilon_i$

The mean is the same as linear regression

$$\mu_i = \beta_0 + X_{i1}\beta_1 + \dots + X_{ip}\beta_p$$

There are two error terms:

Z_i is spatially-correlated

• $\varepsilon_i \sim \text{Normal}(0, \tau^2)$ are independent across *i*

• Example: $E(Z_i) = 0$ and $Cov(Z_i, Z_j) = \sigma^2 \exp(-d_{ij}/\phi)$

Review of the Gaussian spatial model

The joint distribution of all n observations is

 $\mathbf{Y} \sim \text{Normal}\{\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma}(\boldsymbol{\theta})\}$

where
$$\beta = (\beta_0, ..., \beta_p)$$
 and $\theta = (\sigma^2, \tau^2, \phi)$

- The likelihood as a function of β and θ
- This marginalizes out the Z_i which requires taking a complicated integral
- This trick avoids estimating the Z_i, but does not work for most non-Gaussian models

Review of logistic regression

- Logistic regression is the most common analysis method for a binary response, Y_i ∈ {0,1}
- Denote the mean as $E(Y_i) = Prob(Y_i = 1) = \pi_i$

• Thus
$$Prob(Y_i = 0) = 1 - \pi_i$$

We want to relate the mean and the linear predictor

$$\eta_i = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j \in (-\infty,\infty)$$

Setting π_i = η_i is wrong because π_i must be between zero and one

Review of logistic regression

We insert the inverse logistic function to ensure the mean is between zero and one,

$$\pi_i = \operatorname{expit}(\eta_i) = \frac{\operatorname{exp}(\eta_i)}{1 + \operatorname{exp}(\eta_i)}$$

This is equivalent to

$$\mathsf{logit}(\pi_i) = \eta_i = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$$

where $logit(\pi) = log\{\pi/(1 - \pi)\}$ is the log odds

Interpretation: β_j is the increase in the log odds of Y_i = 1 if X_{ij} increases by one and all other covariates are held fixed

Review of Poisson regression

- ► Poisson regression is the most common analysis method for a count response, Y_i ∈ {0, 1, 2, ...}
- Often the count is associated with a known sampling effort variable N_i, i.e., hours of effort or population size
- Denote the mean as E(Y_i) = N_iλ_i so λ_i is the expected count per unit effort
- We want to relate the mean and the linear predictor $\eta_i = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$
- Setting $\lambda_i = \eta_i$ is wrong because λ_i must be positive

Review of Poisson regression

• To ensure λ_i is positive we set $\lambda_i = \exp(\eta_i)$

This is equivalent to

$$\log(\lambda_i) = \eta_i = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$$

- Interpretation: The log of the mean increase by β_j if X_{ij} increases by one and all other covariates are held fixed
- Interpretation: The mean is multiplied by exp(β_j) if X_{ij} increases by one and all other covariates are held fixed

Review of generalized linear models (GLMs)

- The response Y_i can have any distribution: Gaussian, binomial, Poisson, Gamma, Negative binomial, etc
- Whatever the distribution, define the mean as $E(Y_i) = \mu_i$
- The link function g relates the mean and linear predictor,

$$g(\mu_i) = \eta_i = eta_0 + \sum_{j=1}^p X_{ij}eta_j$$

You can chose any link function that ensures that μ_i is in the appropriate range for any X_i and β

Spatial GLMs

A spatial GLM adds a spatial term to the linear predictor

$$\eta_i = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j + Z_i$$

- Z is a spatial process as in the Gaussian spatial model
- ► For example, $E(Z_i) = 0$ and $Cov(Z_i, Z_j) = \sigma^2 \exp(-d_{ij}/\phi)$
- Observations are assumed to be independent given the spatial random effects, Z_i
- A nugget is not included in Z_i

Spatial logistic regression

• Assume $Y_i | \pi_i \sim \text{Bernoulli}(\pi_i)$, independent over *i* ¹²

• The probability $Prob(Y_i = 1) = \pi_i$ is modeled as

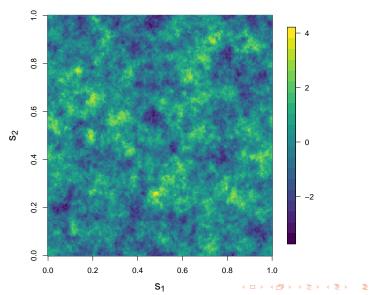
$$\operatorname{logit}(\pi_i) = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j + Z_i$$

The β_j are interpreted just like non-spatial logistic regression

¹A Bernoulli(π) random variable is a Binomial(1, π) random variable ²If *Y* is the number of successes in *n* independent trials, each with success probability π , then *Y* ~ Binomial(n, π)

Random draw for $Z_1, ..., Z_n$

Ζ



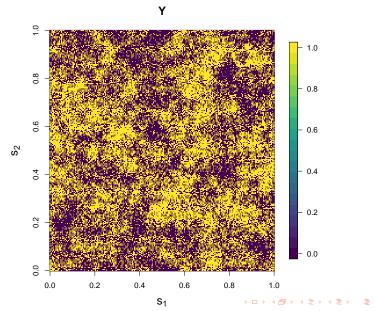
Plot of $\pi_i = \text{expit}(Z_i)$

expit(Z) 1.0 1.0 0.8 - 0.8 0.6 - 0.6 \mathbf{s}_2 0.4 - 0.4 - 0.2 0.2 0.0 0.4 0.6 0.0 0.2 0.8 1.0

S₁

э

Realization of $Y_i | \pi_i \sim \text{Bernoulli}(\pi_i)$



Spatial Poisson regression

• Assume $Y_i | \lambda_i \sim \text{Possion}(N_i \lambda_i)$, independent over i^3

- N_i is the known "offset term"
- The relative risk λ_i is modeled as

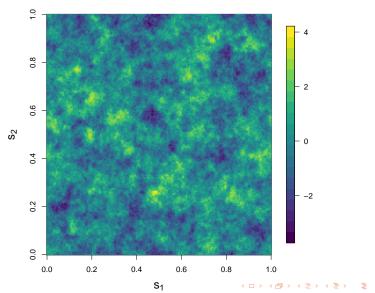
$$\log(\lambda_i) = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j + Z_i$$

 The β_j are interpreted just like non-spatial Poisson regression

³An equivalent model used in some packages is $Y_i | \lambda_i \sim \text{Possion}(\lambda_i)$ where $\log(\lambda_i) = \log(N_i) + \beta_0 + \sum_{i=1}^{p} X_{ij}\beta_j + Z_i$

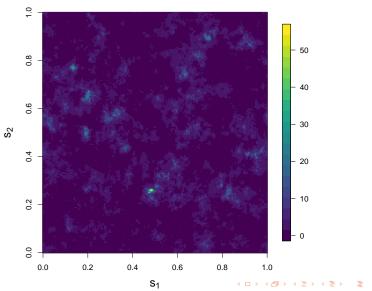
Random draw for $Z_1, ..., Z_n$

Ζ

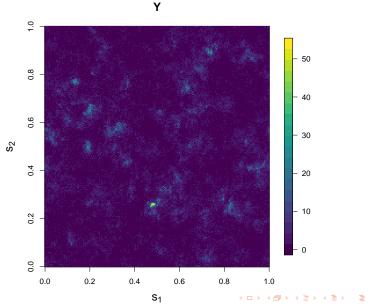


Plot of $\lambda_i = \exp\{Z_i\}$

exp(Z)



Realization of $Y_i | \lambda_i \sim \text{Poisson}(\lambda_i)$



Spatial Gaussian regression

The usual Gaussian model is a special case of a GLM

• Assume $Y_i | \eta_i \sim \text{Normal}(\eta_i, \tau^2)$, independent over *i*

• The mean η_i is modeled as

$$\eta_i = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j + Z_i$$

• The link function is the identify function, $g(\eta) = \eta$

Spatial GLMs

- A spatial GLM assumes the responses are conditionally independent given Z_i
- The spatial terms Z_i account for spatial dependence
- Even if Z has a simple correlation structure, the marginal (over Z) correlation of Y is hard to compute
- For example, in the logistic case we would need to be able to compute intractable quantities like

 $Cov{expit(Z_i), expit(Z_j)}$

Computing

- As mentioned in the introduction, it is hard to compute the joint likelihood
- For example, in the binary case, $Prob(Y_i = Y_j = 1)$
- This makes MLE tricky
- However, a Bayesian analysis with MCMC is actually straightforward, but slow
- ► We'll use spBayes, but there are other packages like OpenBUGS, JAGS, INLA, STAN, etc