
Geostatistical estimation -
Part I

Applied Spatial Statistics
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Estimation strategies

I We now have several possible models for spatial processes

I In this lecture we discuss methods for fitting models to data

I One task is model selection:
I Which covariates to include in X?
I Exponential or Matern correlation?
I Should we include a nugget?
I Is the covariance stationary?

I Another is parameter estimation:
I Mean parameters β = (β0, β1, ..., βp)
I Covariance parameters θ = (τ2, σ2, φ, ν)
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Variogram

I The variogram is a common exploratory analysis tool

I It is used as a quick visual check to suggest an appropriate
covariance model

I It is often applied to the least squares residuals

ε̂i = Yi − Xi β̂

I The expressions below use Yi instead of ε̂i to match
notation used in books/web
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Variogram - Definition

I The true variogram is a function of the parameters; the
empirical variogram is a function of the data

I The true variogram is

2γ(si ,sh) = Var(Yi − Yj)
2

I γ(si ,sj) is the semi-variogram

I Assuming Yi and Yj have the same mean, then the
variogram is related to the covariance as

2γ(si ,si) = Var(Yi) + Var(Yj)− Cov(Yi ,Yj)

I The variogram increases with distance
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Variogram - Understanding the variogram

I If the mean is smooth over space, the variogram removes it
by local differencing

I Assuming Yi and Yj have the same mean, the variogram is

E(Yi − Yj)
2

I If the observations are spatially correlated, the variogram
is small for small distances

I The magnitude of local differences, and thus the
variogram, increase with distance
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Variogram - Understanding the variogram

Assume the isotropic model Yi = Zi + εi

I V(Zi) = σ2

I V(εi) = τ2

I Cor(Zi ,Zj) = ρ(dij)

I dij is the distance between si and sj

I ρ(0) = 1 and decreases to ρ(∞) = 0
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Variogram - Understanding the variogram

Under this isotropic mean-zero model we have
I Var(Yi) = Var(Zi + εi) = Var(Zi) + Var(εi) = σ2 + τ2

I The spatial covariance is

Cov(Yi ,Yj) = Cov(Zi + εi ,Zj + εj)

= Cov(Zi ,Zj) + Cov(Zi , εj) + Cov(εi ,Zj) + Cov(εi , εj)

= Cov(Zi ,Zj)

= σ2ρ(dij)

I The correlation is

Cor(Yi ,Yj) =
σ2

σ2 + τ2 ρ(dij)
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Exponential covariance plot
The exponential model is V(Yi) = σ2 + τ2 and
Cov(Yj ,Yj) = σ2 exp(−dij/φ)
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This plot assumes σ2 = 4, τ2 = 2 and φ = 0.2
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Exponential correlation plot

The exponential model Cor(Yj ,Yj) =
σ2

σ2+τ2 exp(−dij/φ)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

C
or

re
la

tio
n

This plot assumes σ2 = 4, τ2 = 2 and φ = 0.2
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Exponential semi-variogram plot

The exponential model is γ(d) = σ2 + τ2 − σ2 exp(−dij/φ)
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This plot assumes σ2 = 4, τ2 = 2 and φ = 0.2
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Exponential covariance plot
The exponential model is V(Yi) = σ2 + τ2 and
Cov(Yj ,Yj) = σ2 exp(−dij/φ)
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This plot assumes σ2 = 4, τ2 = 0 and φ = 0.2
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Exponential correlation plot

The exponential model Cor(Yj ,Yj) =
σ2

σ2+τ2 exp(−dij/φ)
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This plot assumes σ2 = 4, τ2 = 0 and φ = 0.2
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Exponential semi-variogram plot

The exponential model is γ(d) = σ2 + τ2 − σ2 exp(−dij/φ)
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This plot assumes σ2 = 4, τ2 = 0 and φ = 0.2
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Exponential covariance plot
The exponential model is V(Yi) = σ2 + τ2 and
Cov(Yj ,Yj) = σ2 exp(−dij/φ)
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This plot assumes σ2 = 0, τ2 = 2 and φ = 0.2
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Exponential correlation plot

The exponential model Cor(Yj ,Yj) =
σ2

σ2+τ2 exp(−dij/φ)
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This plot assumes σ2 = 0, τ2 = 2 and φ = 0.2
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Exponential semi-variogram plot

The exponential model is γ(d) = σ2 + τ2 − σ2 exp(−dij/φ)
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This plot assumes σ2 = 0, τ2 = 2 and φ = 0.2
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Matern semi-variogram plot
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This plot assumes σ2 = 4, τ2 = 2, ν = 2 and φ = 0.1
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Matern semi-variogram plot
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This plot assumes σ2 = 4, τ2 = 2, ν = 10 and φ = 0.05
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Variogram - Terminology

I The nugget variance, Var(εi) = τ2, is the semi-variogram
at distance 0

I The spatial variance is the partial sill, Var(Zi) = σ2

I The semi-variogram plateaus at the sill, Var(Yi) = σ2 + τ2

I The effective range is the distance at which the variogram
hits the sill
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Variogram - Terminology
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Variogram - Empirical variogram

I The empirical variogram uses data to approximate the true
variogram

I The idea is to group pairs of observations by their distance
and approximate the variance for each group

I Let wij(d) = 1 if dij ∈ (d − h,d + h) and wij = 0 otherwise

I The empirical variogram is at distance d is

γ̂(d) =
1

2N(d)

n∑
i=1

i∑
j=1

wij(d)(Yi − Yj)
2

where N(d) as the number of pairs with wij(d) = 1
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Variogram - tuning the empirical variogram

I The emprical variogram is computed for L distances,
d1, ...,dL

I The width h is set to (d2 − d1)/2

I We need to pick L and the maximum distance dL

I Rule of thumb: Set dL to twice the effective range (larger
will give nonsense!)

I Rule of thumb: Set L so that the number of pairs for each
bin is at least 30

I Since we do not know the effective range at the beginning,
this takes some iteration
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Variogram - Examples
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Variogram - Examples
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● Estimated
True

The curve is σ2 + τ2 − σ2 exp(−d/ρ) for σ2 = 4, τ2 = 4 and ρ = 0.1
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Variogram - What to look for (questions)

1. Is there a nugget?

2. What is the effective range?

3. Does an exponential fit well or do I need a Matern?

4. Is the covariance isotropic?

5. Is the covariance stationary?
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Variogram - What to look for (answers)

1. Check if the variogram goes through the origin

2. Find the distance at which the varogram plateaus

3. Plot the best fitting exponential model (see next slide)

4. Plot the variogram for pairs separated by different angles
(N/S v E/W pairs), see if they are similar

5. Compute the variogram separately for different subregions,
see if they are similar

26 / 28



Variogram - Least squares fitting

I Variograms can be used for parameter estimation

I Data: γ̂(d1), ..., γ̂(dL)

I Model: γ(d ;θ), e.g., γ(d ;θ) = τ2 + σ2 − σ2 exp(−d/φ)

I Estimate θ to minimize

L∑
l=1

{γ̂(dl)− γ(dl)}2
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Variogram - Examples
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Candidate 1 gives SSE = 11.9
Candidate 2 gives SSE = 8.5
Candidate 3 gives SSE = 15.9

All take σ2 = 4 and τ2 = 2 but vary by ρ ∈ {0.05,0.10,0.20}
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