Geostatistical estimation -Part I

Applied Spatial Statistics

・ロト (部)、(注)、(注)、(注)、(注)、(1/28 1/28

Estimation strategies

- We now have several possible models for spatial processes
- In this lecture we discuss methods for fitting models to data
- One task is model selection:
 - Which covariates to include in X?
 - Exponential or Matern correlation?
 - Should we include a nugget?
 - Is the covariance stationary?
- Another is parameter estimation:
 - Mean parameters $\beta = (\beta_0, \beta_1, ..., \beta_p)$
 - Covariance parameters $\theta = (\tau^2, \sigma^2, \phi, \nu)$

Variogram

- The variogram is a common exploratory analysis tool
- It is used as a quick visual check to suggest an appropriate covariance model
- It is often applied to the least squares residuals

$$\hat{\varepsilon}_i = Y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}$$

The expressions below use Y_i instead of ê_i to match notation used in books/web

Variogram - Definition

- The true variogram is a function of the parameters; the empirical variogram is a function of the data
- The true variogram is

$$2\gamma(\mathbf{s}_i,\mathbf{s}_h) = \operatorname{Var}(Y_i - Y_j)^2$$

- $\gamma(\mathbf{s}_i, \mathbf{s}_j)$ is the semi-variogram
- Assuming Y_i and Y_j have the same mean, then the variogram is related to the covariance as

$$2\gamma(\mathbf{s}_i, \mathbf{s}_i) = \operatorname{Var}(Y_i) + \operatorname{Var}(Y_j) - \operatorname{Cov}(Y_i, Y_j)$$

The variogram increases with distance

Variogram - Understanding the variogram

- If the mean is smooth over space, the variogram removes it by local differencing
- Assuming Y_i and Y_j have the same mean, the variogram is

$$\mathsf{E}(Y_i - Y_j)^2$$

- If the observations are spatially correlated, the variogram is small for small distances
- The magnitude of local differences, and thus the variogram, increase with distance

Variogram - Understanding the variogram

Assume the isotropic model $Y_i = Z_i + \varepsilon_i$

•
$$V(Z_i) = \sigma^2$$

•
$$V(\varepsilon_i) = \tau^2$$

•
$$\operatorname{Cor}(Z_i, Z_j) = \rho(d_{ij})$$

d_{ij} is the distance between **s**_i and **s**_i

•
$$\rho(0) = 1$$
 and decreases to $\rho(\infty) = 0$

Variogram - Understanding the variogram

Under this isotropic mean-zero model we have

- ► $\operatorname{Var}(Y_i) = \operatorname{Var}(Z_i + \varepsilon_i) = \operatorname{Var}(Z_i) + \operatorname{Var}(\varepsilon_i) = \sigma^2 + \tau^2$
- The spatial covariance is

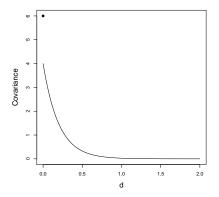
$$\begin{aligned} \mathsf{Cov}(\mathsf{Y}_i,\mathsf{Y}_j) &= \mathsf{Cov}(Z_i + \varepsilon_i, Z_j + \varepsilon_j) \\ &= \mathsf{Cov}(Z_i, Z_j) + \mathsf{Cov}(Z_i, \varepsilon_j) + \mathsf{Cov}(\varepsilon_i, Z_j) + \mathsf{Cov}(\varepsilon_i, \varepsilon_j) \\ &= \mathsf{Cov}(Z_i, Z_j) \\ &= \sigma^2 \rho(d_{ij}) \end{aligned}$$

The correlation is

$$\operatorname{Cor}(Y_i, Y_j) = \frac{\sigma^2}{\sigma^2 + \tau^2} \rho(d_{ij})$$

Exponential covariance plot

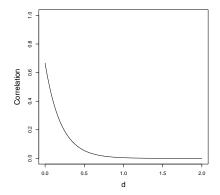
The exponential model is $V(Y_i) = \sigma^2 + \tau^2$ and $Cov(Y_j, Y_j) = \sigma^2 \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 2$ and $\phi = 0.2$

Exponential correlation plot

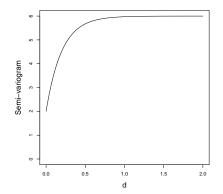
The exponential model Cor(Y_j, Y_j) = $\frac{\sigma^2}{\sigma^2 + \tau^2} \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 2$ and $\phi = 0.2$

Exponential semi-variogram plot

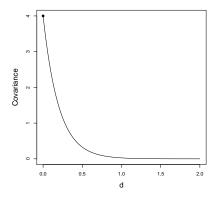
The exponential model is $\gamma(d) = \sigma^2 + \tau^2 - \sigma^2 \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 2$ and $\phi = 0.2$

Exponential covariance plot

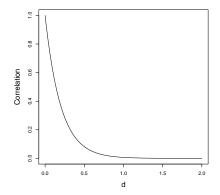
The exponential model is $V(Y_i) = \sigma^2 + \tau^2$ and $Cov(Y_j, Y_j) = \sigma^2 \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 0$ and $\phi = 0.2$

Exponential correlation plot

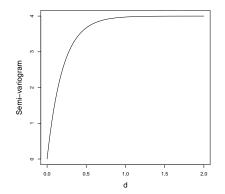
The exponential model Cor(Y_j, Y_j) = $\frac{\sigma^2}{\sigma^2 + \tau^2} \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 0$ and $\phi = 0.2$

Exponential semi-variogram plot

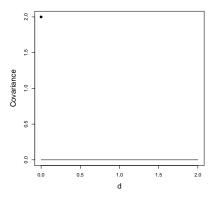
The exponential model is $\gamma(d) = \sigma^2 + \tau^2 - \sigma^2 \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 4$, $\tau^2 = 0$ and $\phi = 0.2$

Exponential covariance plot

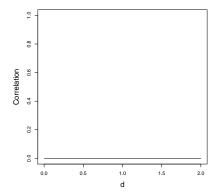
The exponential model is $V(Y_i) = \sigma^2 + \tau^2$ and $Cov(Y_j, Y_j) = \sigma^2 \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 0$, $\tau^2 = 2$ and $\phi = 0.2$

Exponential correlation plot

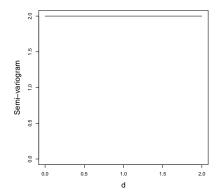
The exponential model Cor(Y_j, Y_j) = $\frac{\sigma^2}{\sigma^2 + \tau^2} \exp(-d_{ij}/\phi)$



This plot assumes $\sigma^2 = 0$, $\tau^2 = 2$ and $\phi = 0.2$

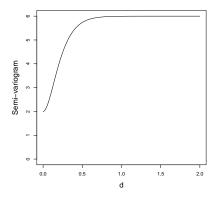
Exponential semi-variogram plot

The exponential model is $\gamma(d) = \sigma^2 + \tau^2 - \sigma^2 \exp(-d_{ij}/\phi)$



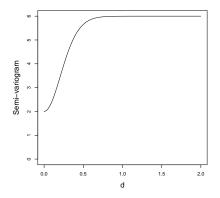
This plot assumes $\sigma^2 = 0$, $\tau^2 = 2$ and $\phi = 0.2$

Matern semi-variogram plot



This plot assumes $\sigma^2 = 4$, $\tau^2 = 2$, $\nu = 2$ and $\phi = 0.1$

Matern semi-variogram plot



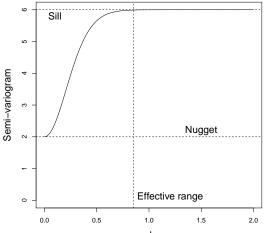
This plot assumes $\sigma^2 = 4$, $\tau^2 = 2$, $\nu = 10$ and $\phi = 0.05$

Variogram - Terminology

- The nugget variance, Var(ε_i) = τ², is the semi-variogram at distance 0
- The spatial variance is the partial sill, $Var(Z_i) = \sigma^2$
- The semi-variogram plateaus at the sill, $Var(Y_i) = \sigma^2 + \tau^2$

The effective range is the distance at which the variogram hits the sill

Variogram - Terminology



d

Variogram - Empirical variogram

- The empirical variogram uses data to approximate the true variogram
- The idea is to group pairs of observations by their distance and approximate the variance for each group
- ▶ Let $w_{ij}(d) = 1$ if $d_{ij} \in (d h, d + h)$ and $w_{ij} = 0$ otherwise
- The empirical variogram is at distance d is

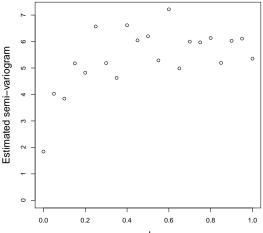
$$\hat{\gamma}(d) = \frac{1}{2N(d)} \sum_{i=1}^{n} \sum_{j=1}^{i} w_{ij}(d) (Y_i - Y_j)^2$$

where N(d) as the number of pairs with $w_{ij}(d) = 1$

Variogram - tuning the empirical variogram

- ► The emprical variogram is computed for *L* distances, *d*₁, ..., *d*_L
- The width *h* is set to $(d_2 d_1)/2$
- We need to pick L and the maximum distance d_L
- Rule of thumb: Set d_L to twice the effective range (larger will give nonsense!)
- Rule of thumb: Set L so that the number of pairs for each bin is at least 30
- Since we do not know the effective range at the beginning, this takes some iteration

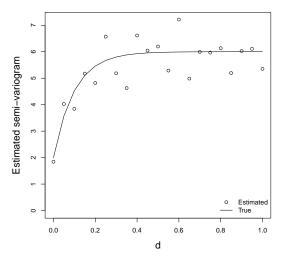
Variogram - Examples



d

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ (*) 23/28

Variogram - Examples



The curve is $\sigma^2 + \tau^2 - \sigma^2 \exp(-d/\rho)$ for $\sigma^2 = 4$, $\tau_{\Box}^2 = 4$ and $\rho = 0.1$

Variogram - What to look for (questions)

- 1. Is there a nugget?
- 2. What is the effective range?
- 3. Does an exponential fit well or do I need a Matern?
- 4. Is the covariance isotropic?
- 5. Is the covariance stationary?

Variogram - What to look for (answers)

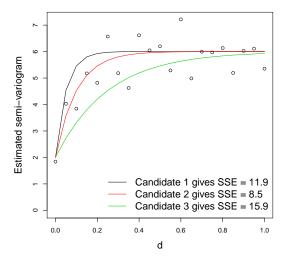
- 1. Check if the variogram goes through the origin
- 2. Find the distance at which the varogram plateaus
- 3. Plot the best fitting exponential model (see next slide)
- 4. Plot the variogram for pairs separated by different angles (N/S v E/W pairs), see if they are similar
- 5. Compute the variogram separately for different subregions, see if they are similar

Variogram - Least squares fitting

- Variograms can be used for parameter estimation
- Data: $\hat{\gamma}(d_1), ..., \hat{\gamma}(d_L)$
- Model: $\gamma(\boldsymbol{d}; \boldsymbol{\theta})$, e.g., $\gamma(\boldsymbol{d}; \boldsymbol{\theta}) = \tau^2 + \sigma^2 \sigma^2 \exp(-\boldsymbol{d}/\phi)$
- Estimate θ to minimize

$$\sum_{l=1}^{L} \{\hat{\gamma}(d_l) - \gamma(d_l)\}^2$$

Variogram - Examples



All take $\sigma^2 = 4$ and $\tau^2 = 2$ but vary by $\rho \in \{0.05, 0.10, 0.20\}$

28/28