
Geostatistical estimation -
Part II

Applied Spatial Statistics
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Estimation strategies

I We now have several possible models for spatial processes

I In this lecture we discuss methods for fitting models to data

I One task is model selection:
I Which covariates to include in X?
I Exponential or Matern correlation?
I Should we include a nugget?
I Is the covariance stationary?

I Another is parameter estimation:
I Mean parameters β = (β0, β1, ..., βp)
I Covariance parameters θ = (τ2, σ2, φ, ν)
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Maximum Likelihood Estimation (MLE)

I Variograms are fast and simple exploratory analysis tools

I Variograms can be used for parameter estimation

I MLE gives more precise parameter estimates

I MLE is also better for formally testing hypotheses are
quantifying uncertainty

I MLE is slow for large datasets
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MLE - Overview

I The likelihood function is the probability (density) of the
data given the parameters

I For example, if Y1, ...,Yn ∼ Normal(µ, σ2) then the
likelihood function is

L(θ) =
n∏

i=1

1
σ
√

2π
exp

{
−(Yi − µ)2

2σ2

}
for parameters θ = (µ, σ).

I The MLE is the value of θ that maximizes this function

I This value “agrees with the data the most”
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Review of the spatial model

I Recall Yi is the observation at location si

I The mean is µi(β) = E(Yi) = β0 +
∑p

j=1 Xijβj

I The variance is Σii(θ) = V(Yi) = σ2 + τ2

I The isotropic exponential covariance is

Σij(θ) = Cov(Yi ,Yj) = σ2 exp(−dij/φ)

I The parameters are β = (β0, ..., βp) and θ = (σ2, τ2, φ)
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Review of the spatial model

I As with linear regression, expressing this model in
matrices cleans up notation

I The n × 1 mean vector is

µ(β) =

µ1(β)
...

µn(β)


I The n × n covariance matrix is

Σ(θ) =


Σ11(θ) Σ12(θ) . . . Σ1n(θ)
Σ21(θ) Σ22(θ) . . . Σ2n(θ)

...
...

...
...

Σn1(θ) Σn2(θ) . . . Σnn(θ)


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Review of the spatial model

I Say n = 3 with s1 = (0,0), s2 = (1,0) and s3 = (2,0)

I Further, p = 1 and X1 = 2, X2 = 4 and X3 = 6

I The 3× 1 mean vector is

µ(β) =

β0 + 2β1
β0 + 4β1
β0 + 6β1


I The 3× 3 covariance matrix is

Σ(θ) =

 σ2 + τ2 σ2 exp(−1/ρ) σ2 exp(−2/ρ)
σ2 exp(−1/ρ) σ2 + τ2 σ2 exp(−1/ρ)
σ2 exp(−2/ρ) σ2 exp(−1/ρ) σ2 + τ2


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The multivariate normal distribution

I If Y = (Y1, ...,Yn)T is jointly normal, then it follows the
multivariate normal (MVN) distribution

I The MVN density function is the likelihood function

L(β,θ) ∝ |Σ(θ)|−1/2 exp

[
−1

2
{Y− µ(β)}T Σ(θ)−1{Y− µ(β)}

]
I This uses the determinent (left) and inverse (right) of Σ(θ)

I If σ = 0 and thus the observations are uncorrelated, this
reduces to the product of univariate normal densities
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Generalized least squares

I If θ is known, the MLE for β minimizes the generalized
least squares

(Y− Xβ)T Σ(θ)−1(Y− Xβ)

I The solution is

β̂ = {XT Σ(θ)−1X}−1XT Σ(θ)−1Y 6= {XT X}−1XT Y

I The formula is complicated, but shows that the regression
estimates are not the same as least squares
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Computational issues

I Evaluating the likelihood function is slow for large n

I The computational times for both the determinant and
inverse of Σ increase like n3

I For n more than a few hundreds this makes MLE hard to
compute

I We will spend an entire lecture on methods application for
large n
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Computational times
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Computational issues

I Another issue to be aware of is singularity of the
covariance matrix

I A matrix is singular if its determinent is zero/inverse does
not exist

I This happens if correlations are nearly one

I If there is no nugget and the dataset contains two
observations at the same location, then Σ is singular

I Even if correlations are not exactly one, high correlation
can pose numerical problems
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Optimizing the likelihood

I We need to find the values of β and θ that maximize
L(β,θ)

I There is no closed-form solution so we use numerical
optimization

I R packages do this for us

I The idea is to start with an initial value, then follow the
derivative of L(β,θ) to the solution

I Supplying good initial values (e.g., least squares for β,
variogram for θ) can speed up this process
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Optimizing the likelihood

I To illustrate this idea, we analyze a simulated dataset

I The data were generated with true values: β0 = 0, ρ = 2,
σ2 = 2 and τ2 = 1

I Data are generated on a 10×10 grid of s (next slide)

I Assume only σ2 and τ2 are unknown

I We plot the likelihood L(τ2, σ2) for τ2, σ2 ∈ [0,3]

I Finally we plot the steps in a (fake) numerical optimization
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Simulated data (Y)
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Likelihood function L(τ2, σ2)
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Numerical optimization
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Standard errors

I Given θ = θ̂, the estimator of β is

β̂ = {XT Σ(θ̂)−1X}−1XT Σ(θ̂)−1Y

I Its covariance/standard errors are easy to compute

Cov(β̂) = {XT Σ(θ̂)−1X}−1

I This “plug-in” approach to computing standard errors given
θ ignores uncertainty in the covariance

I However, this works fine for medium/large datasets

I Confidence intervals and hypothesis tests for the
regression coefficients proceed as in linear regression
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Standard errors

I Standard errors for the estimator of θ can be computed
under a normal approximation

I This uses the second derivatives of the likelihood function

I Unfortunately, these standard errors are unreliable unless
the dataset is huge
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Model comparisons

Model selection choices include:

I Which covariates to include?

I Should I use a nugget?

I Exponential or Matern correlation?

Model can be compared using cross-validation (later, since it
requires prediction) or information criteria
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Model comparisons

I AIC/BIC are computed as usual,

AIC = −2 log{L(β̂, θ̂)}+ 2k

BIC = −2 log{L(β̂, θ̂)}+ log(n)k

where k is the number of parameters in (β,θ)

I Models with smaller AIC/BIC are preferred

I You can use forward/backward selection for selecting
covariates

I The covariates selected can depend on the covariance
model
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