Geostatistical Part |l|

Applied Spatial Statistics

Estimation strategies

- We now have several possible models for spatial processes
- In this lecture we discuss methods for fitting models to data
- One task is model selection:
- Which covariates to include in X?
- Exponential or Matern correlation?
- Should we include a nugget?
- Is the covariance stationary?
- Another is parameter estimation:
- Mean parameters $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)$
- Covariance parameters $\boldsymbol{\theta}=\left(\tau^{2}, \sigma^{2}, \phi, \nu\right)$

Maximum Likelihood Estimation (MLE)

- Variograms are fast and simple exploratory analysis tools
- Variograms can be used for parameter estimation
- MLE gives more precise parameter estimates
- MLE is also better for formally testing hypotheses are quantifying uncertainty
- MLE is slow for large datasets

MLE - Overview

- The likelihood function is the probability (density) of the data given the parameters
- For example, if $Y_{1}, \ldots, Y_{n} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ then the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

for parameters $\boldsymbol{\theta}=(\mu, \sigma)$.

- The MLE is the value of $\boldsymbol{\theta}$ that maximizes this function
- This value "agrees with the data the most"

Review of the spatial model

- Recall Y_{i} is the observation at location \mathbf{s}_{i}
- The mean is $\mu_{i}(\boldsymbol{\beta})=\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\sum_{j=1}^{p} X_{i j} \beta_{j}$
- The variance is $\sum_{i i}(\theta)=\mathrm{V}\left(Y_{i}\right)=\sigma^{2}+\tau^{2}$
- The isotropic exponential covariance is

$$
\Sigma_{i j}(\theta)=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\sigma^{2} \exp \left(-d_{i j} / \phi\right)
$$

- The parameters are $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)$ and $\boldsymbol{\theta}=\left(\sigma^{2}, \tau^{2}, \phi\right)$

Review of the spatial model

- As with linear regression, expressing this model in matrices cleans up notation
- The $n \times 1$ mean vector is

$$
\mu(\boldsymbol{\beta})=\left(\begin{array}{c}
\mu_{1}(\boldsymbol{\beta}) \\
\vdots \\
\mu_{n}(\boldsymbol{\beta})
\end{array}\right)
$$

- The $n \times n$ covariance matrix is

$$
\Sigma(\boldsymbol{\theta})=\left(\begin{array}{cccc}
\Sigma_{11}(\boldsymbol{\theta}) & \Sigma_{12}(\boldsymbol{\theta}) & \ldots & \Sigma_{1 n}(\boldsymbol{\theta}) \\
\Sigma_{21}(\boldsymbol{\theta}) & \Sigma_{22}(\boldsymbol{\theta}) & \ldots & \Sigma_{2 n}(\boldsymbol{\theta}) \\
\vdots & \vdots & \vdots & \vdots \\
\Sigma_{n 1}(\boldsymbol{\theta}) & \Sigma_{n 2}(\boldsymbol{\theta}) & \ldots & \Sigma_{n n}(\boldsymbol{\theta})
\end{array}\right)
$$

Review of the spatial model

- Say $n=3$ with $s_{1}=(0,0), s_{2}=(1,0)$ and $s_{3}=(2,0)$
- Further, $p=1$ and $X_{1}=2, X_{2}=4$ and $X_{3}=6$
- The 3×1 mean vector is

$$
\mu(\boldsymbol{\beta})=\left(\begin{array}{l}
\beta_{0}+2 \beta_{1} \\
\beta_{0}+4 \beta_{1} \\
\beta_{0}+6 \beta_{1}
\end{array}\right)
$$

- The 3×3 covariance matrix is

$$
\Sigma(\boldsymbol{\theta})=\left(\begin{array}{ccc}
\sigma^{2}+\tau^{2} & \sigma^{2} \exp (-1 / \rho) & \sigma^{2} \exp (-2 / \rho) \\
\sigma^{2} \exp (-1 / \rho) & \sigma^{2}+\tau^{2} & \sigma^{2} \exp (-1 / \rho) \\
\sigma^{2} \exp (-2 / \rho) & \sigma^{2} \exp (-1 / \rho) & \sigma^{2}+\tau^{2}
\end{array}\right)
$$

The multivariate normal distribution

- If $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ is jointly normal, then it follows the multivariate normal (MVN) distribution
- The MVN density function is the likelihood function

$$
L(\boldsymbol{\beta}, \boldsymbol{\theta}) \propto|\Sigma(\boldsymbol{\theta})|^{-1 / 2} \exp \left[-\frac{1}{2}\{\mathbf{Y}-\mu(\boldsymbol{\beta})\}^{\top} \Sigma(\boldsymbol{\theta})^{-1}\{\mathbf{Y}-\mu(\boldsymbol{\beta})\}\right]
$$

- This uses the determinent (left) and inverse (right) of $\Sigma(\boldsymbol{\theta})$
- If $\sigma=0$ and thus the observations are uncorrelated, this reduces to the product of univariate normal densities

Generalized least squares

- If θ is known, the MLE for $\boldsymbol{\beta}$ minimizes the generalized least squares

$$
(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{T} \Sigma(\boldsymbol{\theta})^{-1}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

- The solution is

$$
\hat{\boldsymbol{\beta}}=\left\{\mathbf{X}^{T} \Sigma(\boldsymbol{\theta})^{-1} \mathbf{X}\right\}^{-1} \mathbf{X}^{T} \Sigma(\boldsymbol{\theta})^{-1} \mathbf{Y} \neq\left\{\mathbf{X}^{T} \mathbf{X}\right\}^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- The formula is complicated, but shows that the regression estimates are not the same as least squares

Computational issues

- Evaluating the likelihood function is slow for large n
- The computational times for both the determinant and inverse of Σ increase like n^{3}
- For n more than a few hundreds this makes MLE hard to compute
- We will spend an entire lecture on methods application for large n

Computational times

Computational issues

- Another issue to be aware of is singularity of the covariance matrix
- A matrix is singular if its determinent is zero/inverse does not exist
- This happens if correlations are nearly one
- If there is no nugget and the dataset contains two observations at the same location, then Σ is singular
- Even if correlations are not exactly one, high correlation can pose numerical problems

Optimizing the likelihood

- We need to find the values of β and θ that maximize $L(\boldsymbol{\beta}, \boldsymbol{\theta})$
- There is no closed-form solution so we use numerical optimization
- R packages do this for us
- The idea is to start with an initial value, then follow the derivative of $L(\boldsymbol{\beta}, \boldsymbol{\theta})$ to the solution
- Supplying good initial values (e.g., least squares for $\boldsymbol{\beta}$, variogram for θ) can speed up this process

Optimizing the likelihood

- To illustrate this idea, we analyze a simulated dataset
- The data were generated with true values: $\beta_{0}=0, \rho=2$, $\sigma^{2}=2$ and $\tau^{2}=1$
- Data are generated on a 10×10 grid of \mathbf{s} (next slide)
- Assume only σ^{2} and τ^{2} are unknown
- We plot the likelihood $L\left(\tau^{2}, \sigma^{2}\right)$ for $\tau^{2}, \sigma^{2} \in[0,3]$
- Finally we plot the steps in a (fake) numerical optimization

Simulated data (Y)

Likelihood function $L\left(\tau^{2}, \sigma^{2}\right)$

Numerical optimization

Standard errors

- Given $\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}$, the estimator of $\boldsymbol{\beta}$ is

$$
\hat{\boldsymbol{\beta}}=\left\{\mathbf{X}^{T} \Sigma(\hat{\boldsymbol{\theta}})^{-1} \mathbf{X}\right\}^{-1} \mathbf{X}^{T} \Sigma(\hat{\boldsymbol{\theta}})^{-1} \mathbf{Y}
$$

- Its covariance/standard errors are easy to compute

$$
\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\left\{\mathbf{X}^{T} \Sigma(\hat{\boldsymbol{\theta}})^{-1} \mathbf{X}\right\}^{-1}
$$

- This "plug-in" approach to computing standard errors given θ ignores uncertainty in the covariance
- However, this works fine for medium/large datasets
- Confidence intervals and hypothesis tests for the regression coefficients proceed as in linear regression

Standard errors

- Standard errors for the estimator of θ can be computed under a normal approximation
- This uses the second derivatives of the likelihood function
- Unfortunately, these standard errors are unreliable unless the dataset is huge

Model comparisons

Model selection choices include:

- Which covariates to include?
- Should I use a nugget?
- Exponential or Matern correlation?

Model can be compared using cross-validation (later, since it requires prediction) or information criteria

Model comparisons

- AIC/BIC are computed as usual,

$$
\begin{gathered}
A I C=-2 \log \{L(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}})\}+2 k \\
B I C=-2 \log \{L(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}})\}+\log (n) k
\end{gathered}
$$

where k is the number of parameters in $(\boldsymbol{\beta}, \boldsymbol{\theta})$

- Models with smaller AIC/BIC are preferred
- You can use forward/backward selection for selecting covariates
- The covariates selected can depend on the covariance model

