Geostatistical models Part I

Applied Spatial Statistics

Motivating example

- Y_{i} is the microbiome species richness (SR) of sample i
- $\mathbf{s}_{i}=\left(s_{i 1}, s_{i 2}\right)$ is the lat/lon of sample i
- X_{i} is the net primary production (NPP) in the vicinity of sample i
- Link to maps of the microbiome data

Objectives

1. Estimate the effect of NPP on SR
2. Determine if there is spatial correlation
3. Predict SR where it has not been measured

Simple methods

1. Estimate the effect of NPP on SR - linear regression
2. Determine if there is spatial correlation - plot sample correlations
3. Predict SR where it has not been measured - take an average of nearby points

We will review these methods, discuss their limitations and introduce geostatistical alternatives

Review of linear regression

First we review non-spatial linear regression

- Least squares
- Linear regression in matrix notation
- Maximum likelihood analysis

Review of linear regression

- Response: Y_{i} for $i \in\{1, \ldots, n\}$
- Covariates: the p covariates are $X_{i 1}, \ldots, X_{i p}$
- The model is

$$
Y_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}+\varepsilon_{i}
$$

- The mean $\mathrm{E}\left(Y_{i}\right)=\mu_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}$ is a linear combination of the covariates
- The errors/residuals $\varepsilon_{i}=Y_{i}-\mu_{i}$ are assumed to be independent and identically distributed

Review of linear regression - least squares

- The slope β_{j} is interpreted as the increase in the mean if $X_{i j}$ increases by one with all other variables held fixed
- Let $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)^{T}$ be the collection of all slopes put in a column vector
- We measure how well a candidate β fits the data using the sum of squared errors

$$
\operatorname{SSE}(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(Y_{i}-\mu_{i}\right)^{2}
$$

where $\mu_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}$

Review of linear regression - least squares

- We use as the estimate of β the value that minimizes the sum of squared errors
- Denote this estimate as $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}\right)^{T}$
- In math notation

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \operatorname{SSE}(\boldsymbol{\beta})
$$

- The estimated mean and residuals are

$$
\hat{\mu}_{i}=\hat{\beta}_{0}+X_{i 1} \hat{\beta}_{1}+\ldots+X_{i p} \hat{\beta}_{p}
$$

and $\hat{\varepsilon}_{i}=Y_{i}-\hat{\mu}_{i}$

Review of linear regression - matrix notation

- The notation and least squares solution have tidy expressions when written using matrices
- The response vector is the $n \times 1$ matrix

$$
\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}
$$

- The covariate matrix is the $n \times(p+1)$ matrix

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & X_{11} & \ldots & X_{1 p} \\
1 & X_{21} & \ldots & X_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{n 1} & \ldots & X_{n p}
\end{array}\right)
$$

- Note that matrices and vectors are written in bold face

Review of linear regression - matrix notation

- Using this notation the model for all n observations is simply written

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon
$$

where $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{T}$ is the vector of errors

- The least squares solution is

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- This is a famous expression, wait for the chorus

Review of linear regression - MLE

- Least squares is a great way to estimate parameters, but it only applies to a few problems
- Maximum likelihood estimation (MLE) is more general
- The likelihood function is the distribution of the data (\mathbf{Y}) given the parameters $(\boldsymbol{\beta})$
- This requires picking a distribution for the errors.
- The most common assumption is $\varepsilon_{i} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$, independent over i

Review of linear regression - MLE

- The Gaussian linear regression model

$$
Y_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right)
$$

indepenent over i

- Since the observations are independent, the distribution of $\left(Y_{1}, \ldots, Y_{n}\right)$ is the product of n Gaussian distributions
- The likelihood is

$$
L(\boldsymbol{\beta})=\prod_{i=1}^{n} \phi\left(Y_{i} ; \mu_{i}, \sigma^{2}\right)
$$

where $\phi\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}$ is the normal PDF

Review of linear regression - MLE

- Putting this together gives

$$
L(\boldsymbol{\beta})=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mu_{i}\right)^{2}\right\}
$$

- The likelihood is related to the sum of squared errors

$$
L(\boldsymbol{\beta}) \propto \exp \left\{-\frac{1}{2 \sigma^{2}} \operatorname{SSE}(\boldsymbol{\beta})\right\}
$$

- The MLE is the $\boldsymbol{\beta}$ that maximizes the likelihood function

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} L(\boldsymbol{\beta})=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \operatorname{SSE}(\boldsymbol{\beta})
$$

- Therefore, for linear regression assuming normality, the least squares solution is also the MLE

Review of linear regression - R code

- The R function that performs linear regression is lm
- You can enter the variables one at a time

$$
\text { fit }<-\operatorname{lm}(Y \sim X 1+X 2+X 3)
$$

or where X is an $n \times p$ matrix

$$
\text { fit }<-\operatorname{lm}(Y \sim X)
$$

- This stores the output in an object called fit, which can be accessed via
summary(fit)
- Regression for the microbiome data

Linear regression for spatially-correlated data

- Can we apply least squares to spatial data such as the microbiome data?
- Well, this is not the worst idea ever
- Correlated ε_{i} violates a model assumption, but the least squares estimator remains unbiased
- However, the least squares estimator is suboptimal
- Also, uncertainty estimates (standard errors, confidence intervals, p -values) are invalid
- Ignoring correlation generally leads to standard errors that are too small

Spatial covariance model

- To improve efficiency and have valid uncertainty quantification, we model/estimate the spatial covariance
- Estimating the covariance function also leads to optimal prediction at unmeasured locations (Kriging)
- How to estimate the correlation between Y_{1} and Y_{2} ?
- How about the sample correlation?
- The sample correlation is undefined with only one observation at each spatial location
- The sample correlation would be valid if we have replications, say data each day for a year at all locations

Spatial covariance models

- For the canonical example without replication, we need assumptions about the spatial correlation
- These simplifying assumption give "spatial replications"
- For example, assume the correlation is the same for all pairs of sites separated by 20 miles
- If our dataset includes dozens of pairs of sites separated by 20 miles, then we collect all such pairs and compute the sample correlation estimator

Spatial linear models

- Below we introduce a standard spatial regression model
- We assume the responses are Gaussian, which is an assumption that needs to be verified
- We will also introduce simplifying assumptions about the spatial covariance (isotropy, stationarity, etc)
- In this lecture we will introduce the model and discuss the role/interpretation of each component
- In future lectures we will discuss how to use data to estimate the parameters of the model

Spatial linear models

The standard model is model is $Y_{i}=\mu_{i}+Z_{i}+\varepsilon_{i}$

- The mean is the same as linear regression

$$
\mu_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}
$$

- There are two error terms:
- Z_{i} is spatially-correlated
- ε_{i} are independent across i
- If the $Z_{i}=0$, then this reduces to non-spatial linear regression

Spatial linear models - mean structure

$$
\mu_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}
$$

- The covariates included in the model can be spatial variables: elevation, distance to a highway, latitude, etc
- They can also be non-spatial: time of day, visibility at the time of measurement, etc
- Covariate often explain the spatial pattern in the data and the residuals are uncorrelated
- For this reason, it is usually a good idea to include latitude, longitude and maybe their squares as covariates
- We will usually plot the least-squares residuals to inspect spatial correlation

Spatial linear models - mean structure

Which variables might we include in the air pollution example?

Spatial covariance models - nugget effect

- The independent error ε_{i} are called the nugget term
- They are distributed $\varepsilon_{i} \sim \operatorname{Normal}\left(0, \tau^{2}\right)$, independent over i
- Sources: measurement error, small-scale variation that cannot be explained

Spatial linear models - nugget effect

Which factors might contribute to nugget error in the air pollution example?

Spatial covariance models

- The Z_{i} capture spatial correlation not explained by the covariates
- Modeling these spatial terms is the heart of spatial statistics
- In Part II we will discuss several models and their properties

