
Geostatistical models -
Part I

Applied Spatial Statistics
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Motivating example

I Yi is the microbiome species richness (SR) of sample i

I si = (si1, si2) is the lat/lon of sample i

I Xi is the net primary production (NPP) in the vicinity of
sample i

I Link to maps of the microbiome data
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https://www4.stat.ncsu.edu/~bjreich/st533/Microbiome


Objectives

1. Estimate the effect of NPP on SR

2. Determine if there is spatial correlation

3. Predict SR where it has not been measured
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Simple methods

1. Estimate the effect of NPP on SR – linear regression

2. Determine if there is spatial correlation – plot sample
correlations

3. Predict SR where it has not been measured – take an
average of nearby points

We will review these methods, discuss their limitations and
introduce geostatistical alternatives
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Review of linear regression

First we review non-spatial linear regression
I Least squares

I Linear regression in matrix notation

I Maximum likelihood analysis
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Review of linear regression

I Response: Yi for i ∈ {1, ...,n}

I Covariates: the p covariates are Xi1, ...,Xip

I The model is

Yi = β0 + Xi1β1 + ...+ Xipβp + εi

I The mean E(Yi) = µi = β0 + Xi1β1 + ...+ Xipβp is a linear
combination of the covariates

I The errors/residuals εi = Yi − µi are assumed to be
independent and identically distributed
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Review of linear regression - least squares

I The slope βj is interpreted as the increase in the mean if
Xij increases by one with all other variables held fixed

I Let β = (β0, ..., βp)
T be the collection of all slopes put in a

column vector

I We measure how well a candidate β fits the data using the
sum of squared errors

SSE(β) =
n∑

i=1

(Yi − µi)
2

where µi = β0 + Xi1β1 + ...+ Xipβp
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Review of linear regression - least squares

I We use as the estimate of β the value that minimizes the
sum of squared errors

I Denote this estimate as β̂ = (β̂0, ..., β̂p)
T

I In math notation

β̂ = argmin
β

SSE(β)

I The estimated mean and residuals are

µ̂i = β̂0 + Xi1β̂1 + ...+ Xipβ̂p

and ε̂i = Yi − µ̂i
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Review of linear regression - matrix notation

I The notation and least squares solution have tidy
expressions when written using matrices

I The response vector is the n × 1 matrix

Y = (Y1, ...,Yn)
T

I The covariate matrix is the n × (p + 1) matrix

X =


1 X11 ... X1p
1 X21 ... X2p
...

...
...

...
1 Xn1 ... Xnp


I Note that matrices and vectors are written in bold face
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Review of linear regression - matrix notation

I Using this notation the model for all n observations is
simply written

Y = Xβ + ε

where ε = (ε1, ..., εn)
T is the vector of errors

I The least squares solution is

β̂ = argmin
β

(Y− Xβ)T (Y− Xβ) = (XT X)−1XT Y

I This is a famous expression, wait for the chorus
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https://www.youtube.com/watch?v=zdhqQGrCITI


Review of linear regression - MLE

I Least squares is a great way to estimate parameters, but it
only applies to a few problems

I Maximum likelihood estimation (MLE) is more general

I The likelihood function is the distribution of the data (Y)
given the parameters (β)

I This requires picking a distribution for the errors.

I The most common assumption is εi ∼ Normal(0, σ2),
independent over i
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Review of linear regression - MLE

I The Gaussian linear regression model

Yi ∼ Normal(µi , σ
2),

indepenent over i

I Since the observations are independent, the distribution of
(Y1, ...,Yn) is the product of n Gaussian distributions

I The likelihood is

L(β) =
n∏

i=1

φ(Yi ;µi , σ
2),

where φ(y ;µ, σ2) = 1√
2πσ

exp
{
− (y−µ)2

2σ2

}
is the normal PDF
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Review of linear regression - MLE

I Putting this together gives

L(β) =
(

1√
2πσ

)n

exp

{
− 1

2σ2

n∑
i=1

(Yi − µi)
2

}

I The likelihood is related to the sum of squared errors

L(β) ∝ exp

{
− 1

2σ2 SSE(β)

}
I The MLE is the β that maximizes the likelihood function

β̂ = argmax
β

L(β) = argmin
β

SSE(β)

I Therefore, for linear regression assuming normality, the
least squares solution is also the MLE
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Review of linear regression - R code

I The R function that performs linear regression is lm

I You can enter the variables one at a time

fit <- lm(Y∼X1+X2+X3)

or where X is an n × p matrix
fit <- lm(Y∼X)

I This stores the output in an object called fit, which can be
accessed via

summary(fit)
I Regression for the microbiome data
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https://www4.stat.ncsu.edu/~bjreich/st533/Microbiome


Linear regression for spatially-correlated data

I Can we apply least squares to spatial data such as the
microbiome data?

I Well, this is not the worst idea ever

I Correlated εi violates a model assumption, but the least
squares estimator remains unbiased

I However, the least squares estimator is suboptimal

I Also, uncertainty estimates (standard errors, confidence
intervals, p-values) are invalid

I Ignoring correlation generally leads to standard errors that
are too small

15 / 24



Spatial covariance model

I To improve efficiency and have valid uncertainty
quantification, we model/estimate the spatial covariance

I Estimating the covariance function also leads to optimal
prediction at unmeasured locations (Kriging)

I How to estimate the correlation between Y1 and Y2?

I How about the sample correlation?

I The sample correlation is undefined with only one
observation at each spatial location

I The sample correlation would be valid if we have
replications, say data each day for a year at all locations
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Spatial covariance models

I For the canonical example without replication, we need
assumptions about the spatial correlation

I These simplifying assumption give “spatial replications”

I For example, assume the correlation is the same for all
pairs of sites separated by 20 miles

I If our dataset includes dozens of pairs of sites separated
by 20 miles, then we collect all such pairs and compute the
sample correlation estimator
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Spatial linear models

I Below we introduce a standard spatial regression model

I We assume the responses are Gaussian, which is an
assumption that needs to be verified

I We will also introduce simplifying assumptions about the
spatial covariance (isotropy, stationarity, etc)

I In this lecture we will introduce the model and discuss the
role/interpretation of each component

I In future lectures we will discuss how to use data to
estimate the parameters of the model
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Spatial linear models

The standard model is model is Yi = µi + Zi + εi

I The mean is the same as linear regression

µi = β0 + Xi1β1 + ...+ Xipβp

I There are two error terms:

I Zi is spatially-correlated

I εi are independent across i

I If the Zi = 0, then this reduces to non-spatial linear
regression
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Spatial linear models - mean structure

µi = β0 + Xi1β1 + ...+ Xipβp

I The covariates included in the model can be spatial
variables: elevation, distance to a highway, latitude, etc

I They can also be non-spatial: time of day, visibility at the
time of measurement, etc

I Covariate often explain the spatial pattern in the data and
the residuals are uncorrelated

I For this reason, it is usually a good idea to include latitude,
longitude and maybe their squares as covariates

I We will usually plot the least-squares residuals to inspect
spatial correlation
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Spatial linear models - mean structure

Which variables might we include in the air pollution example?

I

I

I

I
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https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution


Spatial covariance models - nugget effect

I The independent error εi are called the nugget term

I They are distributed εi ∼ Normal(0, τ2), independent over i

I Sources: measurement error, small-scale variation that
cannot be explained
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Spatial linear models - nugget effect

Which factors might contribute to nugget error in the air
pollution example?

I

I

I

I
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https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution
https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution


Spatial covariance models

I The Zi capture spatial correlation not explained by the
covariates

I Modeling these spatial terms is the heart of spatial
statistics

I In Part II we will discuss several models and their
properties
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