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Motivating example

v

Y; is the microbiome species richness (SR) of sample i

v

s; = (Si1, Sj2) is the lat/lon of sample i

v

X; is the net primary production (NPP) in the vicinity of
sample i

v

Link to maps of the microbiome data
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https://www4.stat.ncsu.edu/~bjreich/st533/Microbiome

Objectives

1. Estimate the effect of NPP on SR

2. Determine if there is spatial correlation

3. Predict SR where it has not been measured
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Simple methods

1. Estimate the effect of NPP on SR — linear regression

2. Determine if there is spatial correlation — plot sample
correlations

3. Predict SR where it has not been measured — take an
average of nearby points

We will review these methods, discuss their limitations and
introduce geostatistical alternatives



Review of linear regression

First we review non-spatial linear regression
» Least squares

» Linear regression in matrix notation

» Maximum likelihood analysis



Review of linear regression

» Response: Y foric {1,...,n}

v

Covariates: the p covariates are Xj1, ..., Xjp

The model is

v

Yi=Po+ XiB1 + ... + Xppfp + ¢

v

The mean E(Y)) = pj = Bo + Xj1 81 + ... + XjpBp is a linear
combination of the covariates

v

The errors/residuals ¢; = Y; — u; are assumed to be
independent and identically distributed



Review of linear regression - least squares

» The slope j3; is interpreted as the increase in the mean if
Xjj increases by one with all other variables held fixed

» Let 3 = (Vo, ..., 6,;)7 be the collection of all slopes put in a
column vector

» We measure how well a candidate 3 fits the data using the
sum of squared errors

n

SSE(B) = (Yi— w)?

i=1

where pj = o + X1 1 + ... + XpBp



Review of linear regression - least squares

» We use as the estimate of 3 the value that minimizes the
sum of squared errors

» Denote this estimate as 3 = (o, ..., fp)"

» In math notation

A

B = argmin SSE(3)
B

» The estimated mean and residuals are
fii = Bo + Xit Bt + ... + Xipfo

and & = Y; — fi;



Review of linear regression - matrix notation

» The notation and least squares solution have tidy
expressions when written using matrices

» The response vector is the n x 1 matrix
Y=(Yy,...,Yn)T

» The covariate matrix is the n x (p + 1) matrix

1 X11 X1p
O P
1 Xn1 an

» Note that matrices and vectors are written in bold face
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Review of linear regression - matrix notation

» Using this notation the model for all n observations is
simply written
Y=XB+¢

where € = (e1,...,en) T is the vector of errors

» The least squares solution is

B = argmin (Y — XB8)T(Y — X3) = (X" X)"'X"Y

» This is a famous expression, wait for the chorus
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https://www.youtube.com/watch?v=zdhqQGrCITI

Review of linear regression - MLE

» Least squares is a great way to estimate parameters, but it
only applies to a few problems

» Maximum likelihood estimation (MLE) is more general

» The likelihood function is the distribution of the data (Y)
given the parameters (3)

» This requires picking a distribution for the errors.

» The most common assumption is ¢; ~ Normal(0, 62),
independent over i
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Review of linear regression - MLE

» The Gaussian linear regression model
Y; ~ Normal(u;, 0?),
indepenent over i

» Since the observations are independent, the distribution of
(Yi,..., Yn) is the product of n Gaussian distributions

» The likelihood is

where ¢(y; i, o) = ﬁ exp {—%} is the normal PDF
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Review of linear regression - MLE

» Putting this together gives

L(B) = (\/2170_) exp {—212 ;(Yi —~ Mi)z}

» The likelihood is related to the sum of squared errors

1
L) x exp { - 515 SSE(B) |
20
» The MLE is the 3 that maximizes the likelihood function

B = argmax L(8) = argmin SSE(3)
B B

» Therefore, for linear regression assuming normality, the
least squares solution is also the MLE
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Review of linear regression - R code

v

The R function that performs linear regression is 1m

You can enter the variables one at a time
fit <- Im(Y~X1+X2+X3)
or where X is an n x p matrix
fit <- Im(Y~X)

This stores the output in an object called fit, which can be
accessed via

v

v

summary(fit)
Regression for the microbiome data

v
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https://www4.stat.ncsu.edu/~bjreich/st533/Microbiome

Linear regression for spatially-correlated data

» Can we apply least squares to spatial data such as the
microbiome data?

» Well, this is not the worst idea ever

» Correlated ¢; violates a model assumption, but the least
squares estimator remains unbiased

» However, the least squares estimator is suboptimal

» Also, uncertainty estimates (standard errors, confidence
intervals, p-values) are invalid

» Ignoring correlation generally leads to standard errors that
are too small
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Spatial covariance model

» To improve efficiency and have valid uncertainty
quantification, we model/estimate the spatial covariance

» Estimating the covariance function also leads to optimal
prediction at unmeasured locations (Kriging)

» How to estimate the correlation between Y; and Y5?
» How about the sample correlation?

» The sample correlation is undefined with only one
observation at each spatial location

» The sample correlation would be valid if we have
replications, say data each day for a year at all locations
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Spatial covariance models

v

For the canonical example without replication, we need
assumptions about the spatial correlation

These simplifying assumption give “spatial replications”

For example, assume the correlation is the same for all
pairs of sites separated by 20 miles

If our dataset includes dozens of pairs of sites separated
by 20 miles, then we collect all such pairs and compute the
sample correlation estimator
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Spatial linear models

» Below we introduce a standard spatial regression model

» We assume the responses are Gaussian, which is an
assumption that needs to be verified

» We will also introduce simplifying assumptions about the
spatial covariance (isotropy, stationarity, etc)

» In this lecture we will introduce the model and discuss the
role/interpretation of each component

» In future lectures we will discuss how to use data to
estimate the parameters of the model
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Spatial linear models

The standard model is model is Y; = u;j + Z; + ¢;

» The mean is the same as linear regression
pi = Bo + Xit By + ... + XipPp
» There are two error terms:
» Z; is spatially-correlated

» ¢; are independent across i

» If the Z; = 0, then this reduces to non-spatial linear
regression
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Spatial linear models - mean structure

pi = Bo + XitB1 + ... + XipPp

» The covariates included in the model can be spatial
variables: elevation, distance to a highway, latitude, etc

» They can also be non-spatial: time of day, visibility at the
time of measurement, etc

» Covariate often explain the spatial pattern in the data and
the residuals are uncorrelated

» For this reason, it is usually a good idea to include latitude,
longitude and maybe their squares as covariates

» We will usually plot the least-squares residuals to inspect
spatial correlation
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Spatial linear models - mean structure

Which variables might we include in the air pollution example?

21/24


https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution

Spatial covariance models - nugget effect

» The independent error ¢; are called the nugget term

» They are distributed ; ~ Normal(0, 72), independent over i

» Sources: measurement error, small-scale variation that
cannot be explained
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Spatial linear models - nugget effect

Which factors might contribute to nugget error in the air
pollution example?
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https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution
https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution

Spatial covariance models

» The Z; capture spatial correlation not explained by the
covariates

» Modeling these spatial terms is the heart of spatial
statistics

» In Part Il we will discuss several models and their
properties
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