Geostatistical models Part II

Applied Spatial Statistics

Spatial linear models

Part I introduced the standard model

$$
Y_{i}=\mu_{i}+Z_{i}+\varepsilon_{i}
$$

- The mean is the same as linear regression

$$
\mu_{i}=\beta_{0}+X_{i 1} \beta_{1}+\ldots+X_{i p} \beta_{p}
$$

- There are two error terms:
- Z_{i} is spatially-correlated
- ε_{i} are independent across i

In Part II we will discuss models for Z_{i}

Spatial covariance models

- The Z_{i} capture spatial correlation not explained by the covariates
- Assume they are Gaussian with mean zero and variance σ^{2}
- Define covariance function as

$$
\operatorname{Cov}\left(Z_{i}, Z_{j}\right)=C\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=\sigma^{2} \rho\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)
$$

- The spatial correlation function ρ is large when \mathbf{s}_{i} and \mathbf{s}_{j} are close and small when they are far apart
- In the extreme, assume that $\rho(\mathbf{s}, \mathbf{s})=1$ so that Z is a continuous function of \mathbf{s}

Spatial covariance models

Common sources of spatial variation:

- Missing covariates that have spatial patterns
- Shared exposure to a common point sources (power plant)
- Share exposure to meteorological events
- Dispersion (e.g., pests, air, water)
- Measurement error, e.g., blurred satellite images

Fake data in one dimension (say s=longitude)

$X=$ distance from edge

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

$b 0+b 1 * X=$ mean trend

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

E = nugget term

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

Z = spatial term

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

$Z+E=$ residuals term

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

$Z+E=$ residuals term

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

$Y=$ observed data

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Fake data in one dimension (say s=longitude)

Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+Z_{i}+E_{i}$

Spatial covariance models

Which factors might contribute each type of variation in the air pollution example?

- Mean trend:
- Spatial error:
- Nugget error:

Spatial covariance models - isotropy

- The spatial correlation term $\rho\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)$ is the novel term in a spatial analysis
- As illustrated from the plots above, it is challenging to estimate
- For example, how would you estimate $\rho(0.2,0.3)$?
- We will make several simplifying assumptions (isotropic, stationary, etc)
- We will then propose models for the correlation function that satisfy these assumptions

Spatial covariance models - isotropy

- The simplest assumption is isotropy
- A covariance is isotropic if it depends only on the distance between locations
- Denoting the distance between \mathbf{s}_{i} and \mathbf{s}_{j} as $d_{i j}$, then

$$
\operatorname{Cor}\left(Z_{i}, Z_{j}\right)=\rho\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=\rho\left(d_{i j}\right)
$$

- For example, the exponential correlation model is

$$
\rho(d)=\exp (-d / \phi)
$$

where ϕ determines the range of correlation

Spatial covariance models - isotropy

Pairs with the same color have the same correlation

Spatial covariance models - stationary

- Stationarity is more general than isotropy
- A covariance is stationary if it depends only on the difference $\mathbf{s}_{i}-\mathbf{s}_{j}$

$$
\operatorname{Cov}\left(Z_{i}, Z_{j}\right)=\rho\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=\rho\left(\mathbf{s}_{i}-\mathbf{s}_{j}\right)
$$

- Stationary means that the covariance is the same throughout the spatial domain
- For if two sites in the east have $\mathbf{s}_{1}-\mathbf{s}_{2}=\mathbf{h}$ and two sites in the west have $\mathbf{s}_{3}-\mathbf{s}_{4}=\mathbf{h}$, then

$$
\operatorname{Cor}\left(Z_{1}, Z_{2}\right)=\operatorname{Cor}\left(Z_{3}, Z_{4}\right)
$$

Spatial covariance models - anisotropy

- Stationary means that the covariance is the same throughout the spatial domain
- However, a stationary covariance can depend on both the distance between locations and the angle
- A covariance that is depends on the angle between location is called anisotropic
- For example, if the predominant wind pattern is east/west, then east/west pairs may have stronger correlation than north/south pairs

Spatial covariance models - anisotropy

Pairs with the same color have the same correlation

Spatial covariance models - nonstationary

If the spatial covariance can change in different parts of the spatial domain, it is nonstationary

- Stronger correlation in the east than the west
- Larger variance in the north than the south
- Stronger correlation between sites at the same elevation
- Larger variance in cities than rural areas

Nonstationary covariance are much harder to estimate

Isotropic, anisotropic or nonstationary?

Isotropic, anisotropic or nonstationary?

- Landsat data
- Malaria data
- Link to maps of the microbiome data

