Geostatistical models – Part III

Applied Spatial Statistics

- We have discussed general ideas including stationarity and isotropy
- Assuming the process has these properties dramatically simplifies the analysis
- However, there are still many correlation functions that are stationary and isotropic (spherical, power, exponential, etc)
- In this lecture we will introduce a few common examples, and discuss their properties

- The spatial covariance models we describe below are isotropic (and thus stationary)
- This is rarely true, but mathematical assumptions are usually over-simplifications
- Often it is better for prediction and estimation to fit a simple stable model than a rich unstable model
- In the estimation section, we will discuss ways to determine if the isotropy assumption is grossly violated

- Just like a correlation has to be between [-1, 1], the correlation function ρ has to satisfy constraints
- ► Of course ρ(s_i, s_j) has to be in [-1, 1], but it must also be symmetric and positive definite
- Symmetric means that $\rho(\mathbf{s}_i, \mathbf{s}_j) = \rho(\mathbf{s}_j, \mathbf{s}_i)$
- The function ρ is positive definite if for any n locations s₁,..., s_n and any values y₁,..., y_n (not all zeros),

$$\sum_{i=1}^n \sum_{j=1}^n \rho(\mathbf{s}_i, \mathbf{s}_j) y_i y_j > 0$$

The correlation functions below are positive definite

The most common model is exponential,

$$\rho(d) = \exp(-d/\phi)$$

• The parameter $\phi > 0$ is the spatial range

Solving
$$\rho(d) = 0.05$$
 gives $d = \log(20)\phi \approx 3\phi$

► So 3φ is often called the effective range, i.e., the distance at which observations are approximately uncorrelated

Another model is the squared exponential,

$$\rho(\boldsymbol{d}) = \exp\{-(\boldsymbol{d}/\phi)^2\}$$

The Matern covariance includes both exponential and squared exponential as special cases

$$\rho(\boldsymbol{d}) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu}\frac{\boldsymbol{d}}{\phi}\right)^{\nu} \boldsymbol{K}_{\nu} \left(\sqrt{2\nu}\frac{\boldsymbol{d}}{\phi}\right)$$

- This expression is hideous
- ► The key is that it adds a second parameter *ν* > 0 to control the smoothness *Z_i*

- Imagine taking a sample from Z_i at an infinite number of spatial locations s₁, s₂, ...
- ► Under the Matern correlation, Z as a function of s is v 1 times mean-square differentiable
- Small ν and Z is a bumpy function of **s**, e.g., if $\nu = 1/2$

$$\rho(d) = \exp(-d/\phi)$$

• Large ν and Z is a smooth function of **s**, e.g., if $\nu = \infty$

$$\rho(\boldsymbol{d}) = \exp\{-(\boldsymbol{d}/\phi)^2\}$$

Exponential correlation

Squared exponential correlation

9/19

Matern correlation

10/19

Spatial covariance models - random draws $v = 0.5, \phi = 0.1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spatial covariance models - random draws $v = 0.5, \phi = 0.01$

12/19

Spatial covariance models - random draws $v = 0.5, \phi = 0.2$

13/19

(ロ) (部) (E) (E)

Spatial covariance models - random draws $v = 10, \phi = 0.1$

<ロ>

<ロ>

<14/19</p>

Models for the landsat data

Say we are trying to build a model for the Landsat data to impute the missing values

- What covariates might we include?
- Do you think we need a nugget?
- Does the process look stationary?
- Does the process look isotropic?
- If we fit a Matern correlation, do you think v would be large or small?

Landsat data

Enhanced vegetation index

Spatial prediction

►

- Prediction at a location without data is a fundamental task in spatial statistics
- Say we observe data at locations s₁,..., s_n and we want to make a prediction at location s₀
- How might this be useful for the air pollution example?

Spatial prediction

 A natural predictive model is to use a linear combination of the observed data

$$\hat{Y}_0 = \sum_{i=1}^n w_i Y_i$$

How to pick the weights, w_i?

- Let d_{i0} be the distance between \mathbf{s}_i and \mathbf{s}_0
- In the absence of other information, we might assume the weights decrease with d_{i0}

Spatial prediction

- K nearest neighbors: Set w_i = 1/K for the K sites closest to s₀ and w_i = 0 for the rest
- ► Inverse distance weighting (IDW): $w_i = c/d_i$ where $1/c = \sum_{i=1}^n 1/d_i$ makes the weights sum to one
- ► Kernel smoothing: $w_i = ck(d_i)$ where $1/c = \sum_{i=1}^n k(d_i)$ and w_i is a kernel, say $exp(-d_i^2)$
- Kriging: This is optimal (in some sense) and takes the weights to be a function of the spatial covariance