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Spatial correlation models

v

We have discussed general ideas including stationarity
and isotropy

Assuming the process has these properties dramatically
simplifies the analysis

However, there are still many correlation functions that are
stationary and isotropic (spherical, power, exponential, etc)

In this lecture we will introduce a few common examples,
and discuss their properties
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Spatial covariance models

v

The spatial covariance models we describe below are
isotropic (and thus stationary)

This is rarely true, but mathematical assumptions are
usually over-simplifications

Often it is better for prediction and estimation to fit a simple
stable model than a rich unstable model

In the estimation section, we will discuss ways to
determine if the isotropy assumption is grossly violated



Spatial covariance models

» Just like a correlation has to be between [-1, 1], the
correlation function p has to satisfy constraints

» Of course p(sj,s;) has to be in [-1,1], but it must also be
symmetric and positive definite

» Symmetric means that p(s;, s;) = p(s},S/)

» The function p is positive definite if for any n locations
S, ...,Sp and any values yy, ..., ¥n (not all zeros),

n n
> " o(siisg)yiy; >0
i=1 j=1

» The correlation functions below are positive definite



Spatial covariance models

v

The most common model is exponential,

p(d) = exp(~d/6)

The parameter ¢ > 0 is the spatial range

v

v

Solving p(d) = 0.05 gives d = log(20)¢ ~ 3¢

v

So 3¢ is often called the effective range, i.e., the distance
at which observations are approximately uncorrelated
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Spatial covariance models

» Another model is the squared exponential,

p(d) = exp{—(d/¢)?}

» The Matern covariance includes both exponential and
squared exponential as special cases

- () x ()

» This expression is hideous

» The key is that it adds a second parameter » > 0 to control
the smoothness Z;
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Spatial covariance models

» Imagine taking a sample from Z; at an infinite number of
spatial locations s+, sy, ...

» Under the Matern correlation, Z as a function of s is v — 1
times mean-square differentiable

» Small v and Z is a bumpy function of s, e.g., if v =1/2

p(d) = exp(~d/6)

» Large v and Z is a smooth function of s, e.g., if v = ¢

p(d) = exp{—(d/¢)?}
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Spatial correlation models

Exponential correlation
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Spatial correlation models

Squared exponential correlation

Correlation, rho(d)
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Spatial correlation models

Matern correlation
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Spatial covariance models - random draws
v=0.5,¢=0.1
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Spatial covariance models - random draws
v=0.5, 9=0.01
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Spatial covariance models - random draws
v=0.5,¢=0.2
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Spatial covariance models - random draws
v =10, ¢=0.1
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Models for the landsat data

Say we are trying to build a model for the Landsat data to
impute the missing values

» What covariates might we include?

v

Do you think we need a nugget?

v

Does the process look stationary?

v

Does the process look isotropic?

v

If we fit a Matern correlation, do you think » would be large
or small?
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https://www4.stat.ncsu.edu/~bjreich/st533/Landsat

Landsat data

Enhanced vegetation index
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Spatial prediction

v

Prediction at a location without data is a fundamental task
in spatial statistics

v

Say we observe data at locations s1, ..., s, and we want to
make a prediction at location sg

v

How might this be useful for the air pollution example?
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https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution

Spatial prediction

v

A natural predictive model is to use a linear combination of
the observed data ;
Yo=> wY
i=1

How to pick the weights, w;?

v

v

Let djg be the distance between s; and sg

v

In the absence of other information, we might assume the
weights decrease with djy
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Spatial prediction

v

K nearest neighbors: Set w; = 1/K for the K sites closest
to sp and w; = 0 for the rest

Inverse distance weighting (IDW): w; = ¢/d; where
1/c =Y, 1/d; makes the weights sum to one

Kernel smoothing: w; = ck(d;) where 1/c =1, k(d})
and w; is a kernel, say exp(—d?)

Kriging: This is optimal (in some sense) and takes the
weights to be a function of the spatial covariance
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