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Spatial correlation models

I We have discussed general ideas including stationarity
and isotropy

I Assuming the process has these properties dramatically
simplifies the analysis

I However, there are still many correlation functions that are
stationary and isotropic (spherical, power, exponential, etc)

I In this lecture we will introduce a few common examples,
and discuss their properties
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Spatial covariance models

I The spatial covariance models we describe below are
isotropic (and thus stationary)

I This is rarely true, but mathematical assumptions are
usually over-simplifications

I Often it is better for prediction and estimation to fit a simple
stable model than a rich unstable model

I In the estimation section, we will discuss ways to
determine if the isotropy assumption is grossly violated
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Spatial covariance models

I Just like a correlation has to be between [−1,1], the
correlation function ρ has to satisfy constraints

I Of course ρ(si ,sj) has to be in [−1,1], but it must also be
symmetric and positive definite

I Symmetric means that ρ(si ,sj) = ρ(sj ,si)

I The function ρ is positive definite if for any n locations
s1, ...,sn and any values y1, ..., yn (not all zeros),

n∑
i=1

n∑
j=1

ρ(si ,sj)yiyj > 0

I The correlation functions below are positive definite
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Spatial covariance models

I The most common model is exponential,

ρ(d) = exp(−d/φ)

I The parameter φ > 0 is the spatial range

I Solving ρ(d) = 0.05 gives d = log(20)φ ≈ 3φ

I So 3φ is often called the effective range, i.e., the distance
at which observations are approximately uncorrelated
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Spatial covariance models

I Another model is the squared exponential,

ρ(d) = exp{−(d/φ)2}

I The Matern covariance includes both exponential and
squared exponential as special cases

ρ(d) =
21−ν

Γ(ν)

(√
2ν

d
φ

)ν

Kν

(√
2ν

d
φ

)
I This expression is hideous

I The key is that it adds a second parameter ν > 0 to control
the smoothness Zi
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Spatial covariance models

I Imagine taking a sample from Zi at an infinite number of
spatial locations s1,s2, ...

I Under the Matern correlation, Z as a function of s is ν − 1
times mean-square differentiable

I Small ν and Z is a bumpy function of s, e.g., if ν = 1/2

ρ(d) = exp(−d/φ)

I Large ν and Z is a smooth function of s, e.g., if ν =∞

ρ(d) = exp{−(d/φ)2}
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Spatial correlation models
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Spatial correlation models
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Spatial correlation models
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Spatial covariance models - random draws
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Spatial covariance models - random draws
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Spatial covariance models - random draws
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Spatial covariance models - random draws
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Models for the landsat data

Say we are trying to build a model for the Landsat data to
impute the missing values

I What covariates might we include?

I Do you think we need a nugget?

I Does the process look stationary?

I Does the process look isotropic?

I If we fit a Matern correlation, do you think ν would be large
or small?
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https://www4.stat.ncsu.edu/~bjreich/st533/Landsat


Landsat data
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Spatial prediction

I Prediction at a location without data is a fundamental task
in spatial statistics

I Say we observe data at locations s1, ...,sn and we want to
make a prediction at location s0

I How might this be useful for the air pollution example?

I

I
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https://www4.stat.ncsu.edu/~bjreich/st533/AirPollution


Spatial prediction

I A natural predictive model is to use a linear combination of
the observed data

Ŷ0 =
n∑

i=1

wiYi

I How to pick the weights, wi?

I Let di0 be the distance between si and s0

I In the absence of other information, we might assume the
weights decrease with di0
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Spatial prediction

I K nearest neighbors: Set wi = 1/K for the K sites closest
to s0 and wi = 0 for the rest

I Inverse distance weighting (IDW): wi = c/di where
1/c =

∑n
i=1 1/di makes the weights sum to one

I Kernel smoothing: wi = ck(di) where 1/c =
∑n

i=1 k(di)
and wi is a kernel, say exp(−d2

i )

I Kriging: This is optimal (in some sense) and takes the
weights to be a function of the spatial covariance
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