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Spatial prediction

I Spatial prediction is a fundamental problem in spatial
statisitcs

I We collect observations Y1, ...,Yn at locations s1, ...,sn

I Now we want to predict the value at another location s0

I Denote the predicted value as Ŷ0

I Ideally we would also assign a prediction standard
deviation and prediction interval
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Examples

I Zillow predicting housing prices

I EPA estimating air pollution

I Geologists mapping oil fields

I Meteorologists mapping wind fields

I Farmers understanding their fields
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Possible methods

I K nearest neighbors

I Inverse distance weighting

I Linear regression with polynomial functions of s as
covariates

I Random forests with s as a covariate

I Kriging
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Optimal spatial prediction

I What is the best way to make predictions?

I This depends on how we define “best” and the class of
methods under consideration

I Kriging is the best unbiased linear predictor (BLUP)

I This is a narrow definition of optimality, and so there is no
guarantee it is the best for a particular analysis

I The optimality result also assumes the spatial covariance
function is known
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Optimal spatial prediction - technical details

I One way to define “best” is via expected mean squared
prediction error

E(Y0 − Ŷ0)2

I A large class are predictions are linear

Ŷ0 =
n∑

i=1

λiYi

and unbiased so that E(Y0 − Ŷ0) = 0

I It can be shown that Kriging gives the optimal formula for
the weights λi in terms of the spatial covariance
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Kriging derivation

I The derivation is interesting, but complicated

I This is a good derivation if you are interested

I This does not assume the data are Gaussian, only that the
mean is constant and covariance are known

I Assuming normality, Kriging can also be derived using the
properties of the multivariate normal distribution
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http://ceadserv1.nku.edu/longa//modules/geostats/lec/latex2html/node1.html
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions


Kriging weights

I Assume we have estimated the mean and covariance
parameters

I Denote the fitted mean vector and covariance matrix of
Y = (Y1, ...,Yn) has µ(β̂) and Σ(θ̂)

I The Kriging prediction is

µ0(β̂) + Σ0(θ̂)Σ(θ̂)−1{Y− µ(β̂)}

where E(Y0) = µ0(β̂) and element i of Σ0(θ̂) is Cov(Y0,Yi)
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Kriging weights

I The Kriging weights are (ignoring β̂)

(λ1, ..., λn) = Σ0(θ̂)Σ(θ̂)−1

I This expression is complicated, but clearly relies on the
spatial covariance

I If we let Z = (Z1, ...,Zn) = Σ(θ̂)−1Y, then

Ŷ0 =
n∑

i=1

Cov(Y0,Yi)Zi

I Locations close to s0 get high weight and vice versa

I The weights are easier to understand with plots
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https://shiny.stat.ncsu.edu/bjreich/Kriging/


Kriging standard errors

I The kriging variance is simply

Var(Ŷ0) = Σ0(θ̂)Σ(θ̂)−1Σ0(θ̂)T

I This assumes the covariance (via θ̂) is known and thus
does not include this sources of uncertainty

I Further assuming normality gives 95% prediction interval

Ŷ0 ± 1.96
√

Var(Ŷ0)
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Types of Kriging

I Simple Kriging: the mean is known or assumed to be zero

I Ordinary Kriging: The mean is constant across space and
estimated, µi(β̂) = β̂0

I Universial Kriging: The mean is estimated and varies
spatially, µi(β̂) = β̂0 +

∑p
j=1 Xij β̂j

I Local Kriging: We use only the nearest k locations to s0 for
prediction to speed up this step (inverting Σ(θ̂) is slow)
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