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Spatiotemporal data

I Say Yi is observed at location si and time ti

I Example: Yi is the air pollution in Los Angeles (si) on
August 1, 2020 (ti )

I We also have covariates, Xi = (Xi1, ...,Xip)

I Example: Xi1 = 1 is the year of ti

I Example: Xi2 = 1 is the elevation of si

I Example: Xi3 is the temperature at time ti and location si
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Objectives

I Estimate covariate effects while accounting for
spatiotemporal correlation

I Make predictions in space where there is no data

I Short-term forecasting

I Test for changes over time
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General model

I As for spatial data, we decompose the data into a mean,
correlated residuals and uncorrelated residuals

Yi = µi + Zi + εi

I The mean is µi = β0 +
∑

j=1 Xijβj

I Zi is correlated across space and time

I The nugget is εi ∼ Normal(0, τ2), independent over i
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Discrete versus continuous time

I Models for Zi are different if time is discrete or continuous

I Discrete time: ti ∈ {1,2,3, ...}, such as ti is a year

I Continuous time: ti ∈ R, such as ti is the time of a
measurement to the millisecond

I Modeling also depends on whether the same spatial
locations are measured over time or not

I There are countless models, but we will cover spatial
autoregressive models for discrete time and separable
models for continuous time1

1Both methods can actually be applied to both cases
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Time-series data

I First, let’s review times series analysis

I Let Yt be the measurement at time t (discrete time)

I Say Yt = µt + Zt + εt

I Assume the covariance of Zt is stationary, i.e., the same
over time

I Then Cov(Zt ,Zt+h) = σ2ψ(h) where ψ is the
autocorrelation function
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Autoregressive (AR) model

I There are many autocorrelation functions

I The simplest model is the AR1 model

Z1 ∼ Normal(0, σ2)

Zt |Zt−1 ∼ Normal{ϕZt−1, (1− ϕ2)σ2}

I Under this model, Var(Zt) = σ2 for all t

I The ACF is ψ(h) = ϕh for ϕ ∈ (−1,1)
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Random samples with ϕ = 0.95
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Autocorrelation function (ACF)

I The true autocorrelation function at lag h is ψ(h)

I The sample ACF is computed like the sample variogram

I This plays a similar role to the variogram

I It is used mostly for exploratory data analysis

I The next slide plots the sample and true ACF ϕh (red)
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ACF of the random sample

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  Z

Estimated
True

10 / 22



Spatiotemporal exploratory analysis

I Do a times series analysis at each site: check the mean
structure and ACF

I Do a separate spatial analysis at each time point: check
mean structure and the variogram

I Plot the time series results over space and the spatial
results over time

I Check for differences over space and time
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Spatiotemporal random effects model

I The overall model is Yi = µi + Zi + εi

I Assume data are available at m time points ti ∈ {1, ...,m}

I For each time point there is a sample at the same n
location si ∈ {S1, ...,Sn}

I Let Z (S,T ) be Zi for the observation with si = S and ti = T
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Spatiotemporal random effects model

I The spatiotemporal term Zi can be split into spatial and
temporal random effects Z (S,T ) = α(S) + γ(T )

I The spatial terms have Var{α(S)} = σ2
S and spatial

correlation

I The temporal terms have Var{γ(T )} = σ2
T and

autocorrelation

I The total variance is Var(Yi) = τ2 + σ2
S + σ2

T

I The proportion of variance explained by spatial and
temporal variation are

σ2
S

τ2 + σ2
S + σ2

T
and

σ2
T

τ2 + σ2
S + σ2

T

13 / 22



Spatial autoregressive model

I The previous model has the same spatial trend for each
time, and the same time trend for each location

I A more flexible model may be needed

I A spatial AR1 model begins with the AR1 at each site,

Z (S,T )|Z (S,T − 1) = ϕZ (S,T − 1) + E(S,T )

where E(S,T ) are independent over time

I A spatial extension allows E(S,T ) to be spatially correlated
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Spatial AR1 at two sites with ϕ = 0.95
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Separable covariance function

I The models so far require repeat observations at a fixed
set of sites

I If this is not the case, we need a new approach

I Example: a Google StreetView car drives around a city
taking an air pollution measurement every second
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Google car data
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Separable covariance function

I In this “irregular” sampling case it is useful to define a
spatiotemporal covariance function

I Back to the Zi notation, there are two distances between
the locations of Zi and Zj

I The spatial distance is dij = ||si − sj ||

I The temporal distance is hij = |ti − tj ||

I Covariance should decrease with both dij and hij
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Separable covariance function

I A separable covariance function is the product of a spatial
and a temporal correlation function

Cov(Zi ,Zj) = σ2ρ(dij)ψ(hij)

I Example: exponential spatial correlation
ρ(dij) = exp(−dij/φ)

I Example: AR1 temporal correlation ψ(dij) = ϕdij

I Fact: If ρ and ψ are valid, the separable covariance is valid

I MLE/MCMC apply as before except with one additional
parameter, ϕ

19 / 22



Spatiotemporal prediction

I Kriging is the optimal (BLUP) spatial prediction

I The prediction is a linear combination of the observations
with weights given by the spatial covariance

I The Kriging formula applies for spatiotemporal prediction

I You simply apply the same formula except with a
spatiotemporal correlation instead of a spatial correlation
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Dynamic linear model (DLM)

I This resembles the spatially-varying coefficients, expect
the covariate effect evolve over time

I The model is

E(Yi) = βo(ti) +
p∑

j=1

Xijβj(ti)

I The slopes can be given an autoregressive prior

I Example: The relationship between social mobility (X ) and
COVID-19 infection rate (Y ) changes over time as more
people begin to wear masks
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Software options

I The spBayes function spDynLM fits a dynamic linear
model

I The package gstat computes the spatiotemporal
variogram/acf and fits parameters by comparing a
separable model to these variograms

I The package spTimer fit a spatiotemporal AR1 model
using MCMC
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