Spatiotemporal models
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Spatiotemporal data

» Say Y, is observed at location s; and time ¢

v

Example: Y; is the air pollution in Los Angeles (s;) on
August 1, 2020 (t;)

v

We also have covariates, X; = (Xi1, ..., Xjp)

v

Example: Xj; = 1 is the year of {;

v

Example: Xj» = 1 is the elevation of s;

v

Example: Xj3 is the temperature at time f; and location s;
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Objectives

v

Estimate covariate effects while accounting for
spatiotemporal correlation

v

Make predictions in space where there is no data

v

Short-term forecasting

v

Test for changes over time
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General model

v

As for spatial data, we decompose the data into a mean,
correlated residuals and uncorrelated residuals

Yi=pi+Zite

v

The mean is p; = Bo + 31 Xii3j

v

Z; is correlated across space and time

v

The nugget is €; ~ Normal(0, 72), independent over i



Discrete versus continuous time

» Models for Z; are different if time is discrete or continuous
» Discrete time: t; € {1,2,3,...}, such as {; is a year

» Continuous time: f; € R, such as f; is the time of a
measurement to the millisecond

» Modeling also depends on whether the same spatial
locations are measured over time or not

» There are countless models, but we will cover spatial
autoregressive models for discrete time and separable
models for continuous time'

'Both methods can actually be applied to both cases
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Time-series data

v

First, let’s review times series analysis

v

Let Y; be the measurement at time t (discrete time)

v

Say Yt:Mt+Zt+5t

v

Assume the covariance of Z; is stationary, i.e., the same
over time

Then Cov(Z;, Z;.p) = o?y(h) where v is the
autocorrelation function

v



Autoregressive (AR) model

v

There are many autocorrelation functions

v

The simplest model is the AR1 model

Zy ~ Normal(0,0?)
Zi|Z—y ~ Normal{pZ_1,(1 - ©?)0?}

v

Under this model, Var(Z;) = o2 for all t

The ACF is ¢(h) = ¢ for p € (—1,1)

v



Random samples with ¢ = 0.95

8/22



Autocorrelation function (ACF)

v

The true autocorrelation function at lag h is ¢ (h)

v

The sample ACF is computed like the sample variogram

v

This plays a similar role to the variogram

v

It is used mostly for exploratory data analysis

The next slide plots the sample and true ACF " (red)

v
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ACF of the random sample
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Spatiotemporal exploratory analysis

v

Do a times series analysis at each site: check the mean
structure and ACF

Do a separate spatial analysis at each time point: check
mean structure and the variogram

Plot the time series results over space and the spatial
results over time

Check for differences over space and time
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Spatiotemporal random effects model

v

The overall modelis Y; = u; + Z; + ¢;

v

Assume data are available at m time points t; € {1,..., m}

v

For each time point there is a sample at the same n
location s; € {Sq, ..., Sp}

v

Let Z(S, T) be Z; for the observation withs; = Sand t; =T

12/22



Spatiotemporal random effects model

» The spatiotemporal term Z; can be split into spatial and
temporal random effects Z(S, T) = a(S) +~(T)

» The spatial terms have Var{a(S)} = ¢% and spatial
correlation

» The temporal terms have Var{y(T)} = ¢% and
autocorrelation

» The total variance is Var(Y;) = 72 + 0% + 0%

» The proportion of variance explained by spatial and
temporal variation are

2 2
2 2 2 and 2 2 2
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Spatial autoregressive model

v

The previous model has the same spatial trend for each
time, and the same time trend for each location

v

A more flexible model may be needed

v

A spatial AR1 model begins with the AR1 at each site,
Z(S,NZ(S, T—-1)=pZ(S, T—-1)+E(S,T)

where E(S, T) are independent over time

v

A spatial extension allows E(S, T) to be spatially correlated
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Spatial AR1 at two sites with ¢ = 0.95

0 20 40 60 80 100

15/22



Separable covariance function

» The models so far require repeat observations at a fixed
set of sites

» If this is not the case, we need a new approach

» Example: a Google StreetView car drives around a city
taking an air pollution measurement every second
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Google car data

log(NO2)
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Separable covariance function

v

In this “irregular” sampling case it is useful to define a
spatiotemporal covariance function

Back to the Z; notation, there are two distances between
the locations of Z; and Z;

v

v

The spatial distance is djj = ||s; — s

v

The temporal distance is hj = [t; — |

v

Covariance should decrease with both dj and h;;
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Separable covariance function

» A separable covariance function is the product of a spatial
and a temporal correlation function

Cov(Z;, Z)) = o®p(d)(hy)

» Example: exponential spatial correlation
p(dj) = exp(—djj/¢)

» Example: AR1 temporal correlation 1(djj) = ¢%
» Fact: If p and ¢ are valid, the separable covariance is valid

» MLE/MCMC apply as before except with one additional
parameter, ¢
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Spatiotemporal prediction

v

Kriging is the optimal (BLUP) spatial prediction

v

The prediction is a linear combination of the observations
with weights given by the spatial covariance

v

The Kriging formula applies for spatiotemporal prediction

v

You simply apply the same formula except with a
spatiotemporal correlation instead of a spatial correlation
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Dynamic linear model (DLM)

» This resembles the spatially-varying coefficients, expect
the covariate effect evolve over time

» The model is
p
E(Y:) = Bo(t) + > X;Bi(t)
j=1
» The slopes can be given an autoregressive prior
» Example: The relationship between social mobility (X) and

COVID-19 infection rate (Y) changes over time as more
people begin to wear masks
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Software options

» The spBayes function spDynLM fits a dynamic linear
model

» The package gstat computes the spatiotemporal
variogram/acf and fits parameters by comparing a
separable model to these variograms

» The package spTimer fit a spatiotemporal AR1 model
using MCMC
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