Spatiotemporal models

Applied Spatial Statistics

Spatiotemporal data

- Say Y_i is observed at location s_i and time t_i
- Example: Y_i is the air pollution in Los Angeles (s_i) on August 1, 2020 (t_i)
- We also have covariates, $\mathbf{X}_i = (X_{i1}, ..., X_{ip})$
- Example: $X_{i1} = 1$ is the year of t_i
- Example: X_{i2} = 1 is the elevation of s_i
- Example: X_{i3} is the temperature at time t_i and location s_i

Objectives

 Estimate covariate effects while accounting for spatiotemporal correlation

Make predictions in space where there is no data

Short-term forecasting

Test for changes over time

General model

As for spatial data, we decompose the data into a mean, correlated residuals and uncorrelated residuals

$$Y_i = \mu_i + Z_i + \varepsilon_i$$

• The mean is
$$\mu_i = \beta_0 + \sum_{j=1} X_{ij}\beta_j$$

Z_i is correlated across space and time

• The nugget is $\varepsilon_i \sim \text{Normal}(0, \tau^2)$, independent over *i*

Discrete versus continuous time

- Models for Z_i are different if time is discrete or continuous
- ▶ Discrete time: $t_i \in \{1, 2, 3, ...\}$, such as t_i is a year
- ► Continuous time: t_i ∈ R, such as t_i is the time of a measurement to the millisecond
- Modeling also depends on whether the same spatial locations are measured over time or not
- There are countless models, but we will cover spatial autoregressive models for discrete time and separable models for continuous time¹

¹Both methods can actually be applied to both cases.

Time-series data

- First, let's review times series analysis
- Let Y_t be the measurement at time t (discrete time)

• Say
$$Y_t = \mu_t + Z_t + \varepsilon_t$$

Assume the covariance of Z_t is stationary, i.e., the same over time

Then Cov(Z_t, Z_{t+h}) = σ²ψ(h) where ψ is the autocorrelation function

Autoregressive (AR) model

There are many autocorrelation functions

The simplest model is the AR1 model

$$egin{array}{rcl} Z_1 &\sim & ext{Normal}(0,\sigma^2) \ Z_t | Z_{t-1} &\sim & ext{Normal}\{arphi Z_{t-1},(1-arphi^2)\sigma^2\} \end{array}$$

• Under this model, $Var(Z_t) = \sigma^2$ for all t

• The ACF is
$$\psi(h) = \varphi^h$$
 for $\varphi \in (-1, 1)$

Random samples with $\varphi = 0.95$

8/22

Autocorrelation function (ACF)

- The true autocorrelation function at lag *h* is $\psi(h)$
- The sample ACF is computed like the sample variogram
- This plays a similar role to the variogram
- It is used mostly for exploratory data analysis
- The next slide plots the sample and true ACF φ^h (red)

ACF of the random sample

10/22

Spatiotemporal exploratory analysis

- Do a times series analysis at each site: check the mean structure and ACF
- Do a separate spatial analysis at each time point: check mean structure and the variogram
- Plot the time series results over space and the spatial results over time
- Check for differences over space and time

Spatiotemporal random effects model

• The overall model is $Y_i = \mu_i + Z_i + \varepsilon_i$

▶ Assume data are available at *m* time points $t_i \in \{1, ..., m\}$

For each time point there is a sample at the same *n* location s_i ∈ {S₁,..., S_n}

• Let Z(S, T) be Z_i for the observation with $\mathbf{s}_i = S$ and $t_i = T$

Spatiotemporal random effects model

- The spatiotemporal term Z_i can be split into spatial and temporal random effects Z(S, T) = α(S) + γ(T)
- ► The spatial terms have Var{a(S)} = σ²_S and spatial correlation
- The temporal terms have Var{γ(T)} = σ_T² and autocorrelation
- The total variance is $Var(Y_i) = \tau^2 + \sigma_S^2 + \sigma_T^2$
- The proportion of variance explained by spatial and temporal variation are

$$\frac{\sigma_S^2}{\tau^2 + \sigma_S^2 + \sigma_T^2} \quad \text{and} \quad \frac{\sigma_T^2}{\tau^2 + \sigma_S^2 + \sigma_T^2}$$

Spatial autoregressive model

- The previous model has the same spatial trend for each time, and the same time trend for each location
- A more flexible model may be needed
- A spatial AR1 model begins with the AR1 at each site,

$$Z(S,T)|Z(S,T-1) = \varphi Z(S,T-1) + E(S,T)$$

where E(S, T) are independent over time

► A spatial extension allows E(S, T) to be spatially correlated

Spatial AR1 at two sites with $\varphi = 0.95$

15/22

Separable covariance function

 The models so far require repeat observations at a fixed set of sites

If this is not the case, we need a new approach

 Example: a Google StreetView car drives around a city taking an air pollution measurement every second

Google car data

Median log(NO2), 7/14/2015 - 5/13/2016

Separable covariance function

- In this "irregular" sampling case it is useful to define a spatiotemporal covariance function
- Back to the Z_i notation, there are two distances between the locations of Z_i and Z_j
- The spatial distance is $d_{ij} = ||\mathbf{s}_i \mathbf{s}_j||$
- The temporal distance is $h_{ij} = |t_i t_j||$
- Covariance should decrease with both d_{ij} and h_{ij}

Separable covariance function

 A separable covariance function is the product of a spatial and a temporal correlation function

$$\operatorname{Cov}(Z_i, Z_j) = \sigma^2 \rho(d_{ij}) \psi(h_{ij})$$

- Example: exponential spatial correlation $\rho(d_{ij}) = \exp(-d_{ij}/\phi)$
- Example: AR1 temporal correlation ψ(d_{ij}) = φ^{d_{ij}}
- Fact: If ρ and ψ are valid, the separable covariance is valid
- MLE/MCMC apply as before except with one additional parameter, φ

Spatiotemporal prediction

- Kriging is the optimal (BLUP) spatial prediction
- The prediction is a linear combination of the observations with weights given by the spatial covariance
- The Kriging formula applies for spatiotemporal prediction

 You simply apply the same formula except with a spatiotemporal correlation instead of a spatial correlation

Dynamic linear model (DLM)

- This resembles the spatially-varying coefficients, expect the covariate effect evolve over time
- The model is

$$\mathsf{E}(Y_i) = \beta_o(t_i) + \sum_{j=1}^p X_{ij}\beta_j(t_i)$$

- The slopes can be given an autoregressive prior
- Example: The relationship between social mobility (X) and COVID-19 infection rate (Y) changes over time as more people begin to wear masks

Software options

The spBayes function spDynLM fits a dynamic linear model

The package gstat computes the spatiotemporal variogram/acf and fits parameters by comparing a separable model to these variograms

The package spTimer fit a spatiotemporal AR1 model using MCMC