Spatial point pattern data -Part I

Applied Spatial Statistics

Spatial point pattern data

• The response is a spatial location, $\mathbf{s}_i = (s_{i1}, s_{i2})$

- Example: s_i is the location of a hurricane landfall
- Example: s_i is the location of cancer diagnosis
- Example: s_i is the location of a homicide
- Example: s_i is the location of a sighting of an endangered species

Spatial point pattern data

 Analysis of point pattern data is fundamentally different than point-referenced or areal data

For example, it does not make sense to model s_i as Gaussian or Poisson

We need completely new terminology and methods

Objectives

Estimate the response density, i.e., the PDF of s_i

Test if locations arise as a completely random sample

Test/model interactions (clustering/repulsion) of samples

Estimate the effect of covariates on the response density

Outline

Notation and terminology

Ripley's K function, which is analogous to the variogram

Tests for a completely random sample

Statistical models for spatial point patterns

Notation and terminology

- The response for observation *i* is s_i = (s_{i1}, s_{i2}) where s_{i1} is longitude and s_{i2} is latitude
- ▶ We are interested only in events in a sampling window, $D \in \mathbb{R}^2$, e.g., D is North Carolina
- Later we will use covariates X(s) = {X₁(s), ..., X_p(s)}, e.g., elevation at s
- ► The spatial point pattern is s₁,..., s_n where n and s_i are random

Notation and terminology

- A multivariate point pattern has multiple types of events
- Example: s₁,..., s_n are locations of pine trees and t₁,..., t_m are locations of oak trees
- A marked point pattern includes a measurement (mark) taken at each response
- ► Example: s₁,..., s_n are locations of pine trees and Y₁,..., Y_n are their heights
- We will not address either of these types of point patterns

In a **completely random sample** (CRS) the locations are independent and uniformly distributed

In a clustered sample the locations are attracted to each other

In a **regular** (aka, repulsion or inhibition) sample the locations are repulsed by each other

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\exists \rightarrow$

10/15

In an **inhomogeneous** sample the density of locations varies with space (hard to distinguish from clustered)

Ripley's K function

- Clustering and inhibition are two types of interactions between locations
- They are analogous to positive and negative correlation
- Ripley's K function is a graphical tool (like the variogram) used to study interactions
- It guides model building
- It also provides a way to test for interactions

Ripley's K function

• Let $d_{ij} = ||\mathbf{s}_i - \mathbf{s}_j||$ be the distance between \mathbf{s}_i and \mathbf{s}_j

Denote the sample proportion of the pairs of sites within t of each other as

$$p(t) = \frac{1}{n^2} \sum_{i \neq j} I(d_{ij} < t),$$

where I(d < t) = 1 if d < t and I(d < t) = 0 if $d \ge t$

Ripley's K function at distance t is

$$K(t) = |\mathcal{D}| p(t)$$

where $|\mathcal{D}|$ is the area of the sampling window

Ripley's K function

• Under CRS, the expected value is $E\{K(t)\} = \pi t^2$

(ロ) (四) (E) (E) (E) (E)

14/15

• Clustering at distance t gives $K(t) > \pi t^2$

• Inhibition at distance t gives $K(t) < \pi t^2$

Hypothetical K functions

マン・ビット ビー うくら

15/15