Spatial point pattern data -Part II

Applied Spatial Statistics

Spatial point pattern data

- In the previous lecture we introduced spatial point pattern data
- Point patterns have two types of dependece: clustering and repulsion
- The K function is an exploratory tool to detect these types of dependence
- In this lecture we will formally test for dependence

CRS test

- A formal test for a completely random sample (CRS) is often a goal of a study
- Example: Do mountain lions interact with each other?
- Example: Do tumors cluster in the brain?
- This test is also useful for model building
- The hypotheses are
 - \mathcal{H}_0 : completely random sample
 - \mathcal{H}_1 : not a completely random sample

CRS test - Ripley's K

Ripley's K can be used to test for a CRS

1. Generate N data sets of size n over \mathcal{D} using CRS

2. For each dataset, compute the K function, $K_1(t), ..., K_N(t)$

3. For each t, compute the 95% interval of the $K_1(t), ..., K_N(t)$

4. Reject \mathcal{H}_0 if the observed K function is outside the interval

CRS test – quadrat

- Split the sampling window into m equally-sized subregions
- Let O_j be the number of observations in region j
- The expected count under \mathcal{H}_0 is $E_j = n/m$
- ▶ Pick *m* so *E_j* > 5
- ► The chi-squared test statistic (m − 1 dof) is

$$\chi = \sum_{j=1}^m \frac{(O_j - E_j)^2}{E_j}$$

CRS test - quadrat

• Clustering gives large χ

• Inhibition gives small χ

▶ Reject H_0 if $\chi < \chi_{m-1,0.025}$ or $\chi < \chi_{m-1,0.975}$

Usually try the test for a few values of m

CRS test – Clark/Evans

Let Y_i be the distance between s_i and its nearest neighbor

• The test statistic is
$$\bar{Y} = \sum_{i=1}^{n} Y_i/n$$

• \bar{Y} 's mean and variance under \mathcal{H}_0 are

$$\mu = rac{n}{|\mathcal{D}|}$$
 and $\sigma^2 = rac{4-\pi}{4\pi n^2} |\mathcal{D}|$

• Clustering gives $\bar{Y} < \mu$ and inhibition gives $\bar{Y} > \mu$

• Reject
$$\mathcal{H}_0$$
 if $|\bar{Y} - \mu|/\sigma > 1.96$

- The scan statistic tests for a "hot spot"
- Let $\mathcal{B} \subset \mathcal{D}$ be a subregion
- Example, s_i is the location of a brain cancer case, B is
 Wake Co and D is North Carolina
- ► The sampling rate of B, r(B), is the expected proportion of the samples that fall in B
- ▶ Under CSR, rate is proportional to area r(B) = |B|/|D|
- If $r(\mathcal{B}) > |\mathcal{B}|/|\mathcal{D}|$ then \mathcal{B} is a hot spot

\mathcal{B} is not a hot spot

s1

<ロ> < @ > < 注 > < 注 > < 注 > のへの

9/14

\mathcal{B} is a hot spot

s1

・ロト・西ト・ヨト・ヨー もんの

10/14

- A scan statistic tests a slightly different set of hypotheses than other CRS tests
- It tests for whether than is a hot spot somewhere in \mathcal{D}
- That is, the location of the hotspot is not known
- In words:
- \mathcal{H}_0 : completely random sample
- \mathcal{H}_1 : there is a hot spot

In math:

 \mathcal{H}_0 : $r(\mathcal{B}) = |\mathcal{B}|/|\mathcal{D}|$ for all $\mathcal{B} \subset \mathcal{D}$

 \mathcal{H}_1 : there exists some $\mathcal{B} \subset \mathcal{D}$ so that $r(\mathcal{B}) > |\mathcal{B}|/|\mathcal{D}|$

- For a given \mathcal{B} , let $t(\mathcal{B})$ be the test statistic that it is a hotspot
- Typically the scan statistic uses the likelihood ratio statistic
- The test statistic "scans" over all possible hotspots
- The final test statistic is

$$T = \max_{\mathcal{B}} t(\mathcal{B})$$

• Typically it only scans over \mathcal{B} that are circles with radius r

The p-value for the test is approximated as

- ▶ Generate *N* datasets of size *n* over *D* under CRS
- For each dataset, compute the scan stat $t_1, ..., t_N$
- The p-value is the proportion of the N scan stats that are larger than the observed scan stat
- ► If the p-value is less then 0.05 we reject H₀ and conclude there is a hotspot somewhere in D

Advantages of CRS tests

- K-function: good exploratory tool, but must do a test for each distance
- Quadrat: Good text for global homogeneity, but does not pick up local features
- Clark/Evans: great local test, but will miss global features
- Spat stat: good at finding clusters, but narrow alternative hypothesis