Spatial point pattern data Part II

Applied Spatial Statistics

Spatial point pattern data

- In the previous lecture we introduced spatial point pattern data
- Point patterns have two types of dependece: clustering and repulsion
- The K function is an exploratory tool to detect these types of dependence
- In this lecture we will formally test for dependence

CRS test

- A formal test for a completely random sample (CRS) is often a goal of a study
- Example: Do mountain lions interact with each other?
- Example: Do tumors cluster in the brain?
- This test is also useful for model building
- The hypotheses are
\mathcal{H}_{0} : completely random sample
\mathcal{H}_{1} : not a completely random sample

CRS test - Ripley's K

Ripley's K can be used to test for a CRS

1. Generate N data sets of size n over \mathcal{D} using CRS
2. For each dataset, compute the K function, $K_{1}(t), \ldots, K_{N}(t)$
3. For each t, compute the 95% interval of the $K_{1}(t), \ldots, K_{N}(t)$
4. Reject \mathcal{H}_{0} if the observed K function is outside the interval

CRS test - quadrat

- Split the sampling window into m equally-sized subregions
- Let O_{j} be the number of observations in region j
- The expected count under \mathcal{H}_{0} is $E_{j}=n / m$
- Pick m so $E_{j}>5$
- The chi-squared test statistic ($m-1$ dof) is

$$
\chi=\sum_{j=1}^{m} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}
$$

CRS test - quadrat

- Clustering gives large χ
- Inhibition gives small χ
- Reject \mathcal{H}_{0} if $\chi<\chi_{m-1,0.025}$ or $\chi<\chi_{m-1,0.975}$
- Usually try the test for a few values of m

CRS test - Clark/Evans

- Let Y_{i} be the distance between \mathbf{s}_{i} and its nearest neighbor
- The test statistic is $\bar{Y}=\sum_{i=1}^{n} Y_{i} / n$
- \bar{Y} 's mean and variance under \mathcal{H}_{0} are

$$
\mu=\frac{n}{|\mathcal{D}|} \text { and } \sigma^{2}=\frac{4-\pi}{4 \pi n^{2}}|\mathcal{D}|
$$

- Clustering gives $\bar{Y}<\mu$ and inhibition gives $\bar{Y}>\mu$
- Reject \mathcal{H}_{0} if $|\bar{Y}-\mu| / \sigma>1.96$

CRS test - scan statistics

- The scan statistic tests for a "hot spot"
- Let $\mathcal{B} \subset \mathcal{D}$ be a subregion
- Example, \mathbf{s}_{i} is the location of a brain cancer case, \mathcal{B} is Wake Co and \mathcal{D} is North Carolina
- The sampling rate of $\mathcal{B}, r(\mathcal{B})$, is the expected proportion of the samples that fall in \mathcal{B}
- Under CSR, rate is proportional to area $r(\mathcal{B})=|\mathcal{B}| /|\mathcal{D}|$
- If $r(\mathcal{B})>|\mathcal{B}| /|\mathcal{D}|$ then \mathcal{B} is a hot spot

\mathcal{B} is not a hot spot

\mathcal{B} is a hot spot

CRS test - scan statistics

- A scan statistic tests a slightly different set of hypotheses than other CRS tests
- It tests for whether than is a hot spot somewhere in \mathcal{D}
- That is, the location of the hotspot is not known
- In words:
\mathcal{H}_{0} : completely random sample
\mathcal{H}_{1} : there is a hot spot
- In math:
$\mathcal{H}_{0}: \quad r(\mathcal{B})=|\mathcal{B}| /|\mathcal{D}|$ for all $\mathcal{B} \subset \mathcal{D}$
$\mathcal{H}_{1}:$ there exists some $\mathcal{B} \subset \mathcal{D}$ so that $r(\mathcal{B})>|\mathcal{B}| /|\mathcal{D}|$

CRS test - scan statistics

- For a given \mathcal{B}, let $t(\mathcal{B})$ be the test statistic that it is a hotspot
- Typically the scan statistic uses the likelihood ratio statistic
- The test statistic "scans" over all possible hotspots
- The final test statistic is

$$
T=\max _{\mathcal{B}} t(\mathcal{B})
$$

- Typically it only scans over \mathcal{B} that are circles with radius r

CRS test - scan statistics

The p-value for the test is approximated as

- Generate N datasets of size n over \mathcal{D} under CRS
- For each dataset, compute the scan stat t_{1}, \ldots, t_{N}
- The p -value is the proportion of the N scan stats that are larger than the observed scan stat
- If the p-value is less then 0.05 we reject \mathcal{H}_{0} and conclude there is a hotspot somewhere in \mathcal{D}

Advantages of CRS tests

- K-function: good exploratory tool, but must do a test for each distance
- Quadrat: Good text for global homogeneity, but does not pick up local features
- Clark/Evans: great local test, but will miss global features
- Spat stat: good at finding clusters, but narrow alternative hypothesis

