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Spatial point pattern models

Statistical models for point pattern data have many uses:

I Predicting the location of the next event

I Testing for covariate effects

I Estimating the spatial range of interactions
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Spatial point pattern models

We will study models that capture all types of interactions we
have discussed:

I Homogeneous Poisson process

I Inhomogeneous Poisson process

I Inhomogeneous Poisson process with covariates

I Strauss process for inhibition

I Cluster process
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Poisson process

I Let λ(s) be the sampling intensity at location s ∈ D

I The expected number of observation in B ⊂ D is the
volume under the intensity function

λ(B) =
∫
B
λ(s)ds

I The probability density function (PDF) is

f (s) =
1
c
λ(s)

where c =
∫
D λ(s)ds is the normalizing constant
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Poisson process intensity function, λ(s)
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Random sample 1
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Random sample 2
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Random sample 3
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Poisson process

A spatial point pattern is a Poisson process with intensity
function λ(s) if:

1. The number of samples in B, Y (B), is distributed

Y (B) ∼ Poisson{λ(B)}

2. If B1 and B2 are disjoint, then Y (B1) and Y (B2) are
independent
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Random sample 4
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Homogeneous Poisson process (HPP)

I An HPP has constant intensity, λ(s) = λ0

I Therefore, expected counts are proportional to area

λ(B) =
∫
B
λ(s)ds = |B|λ0

I The PDF is uniform,

f (s) =
λ(s)∫

D λ(s)ds
=

1
|D|

I Therefore, HPP is completely random sampling
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Homogeneous Poisson process (HPP)

Steps to sample from an HPP:

I Draw n ∼ Poisson{λ(D)} where λ(D) = λ0|D|

I Sample s1, ...,sn uniformly and independently on D
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Inhomogeneous Poisson process (IPP)

I An IPP has spatially-varying intensity λ(s)

I The intensity function can be modeled similar to the mean
function in geostatistics

I A parametric model regresses λ(s) onto covariates

I A log-Gaussian Cox process assumes log{λ(s)} is a
Gaussian process

I Kernel smoothing is nonparametric method to estimate
λ(s)
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IPP - Kernel density estimator (KDE)

I Let λ(s) = f (s)/c where f (s) is the PDF and
∫
D f (s)ds = 1

I Taking c = 1/n gives λ̂(D) = n

I Any density estimator can be used to estimate p

I Simple: partition D into sub-regions and use the sample
proportions in each sub-region to estimate f

I KDE is a smoother version of this,

f̂ (s0) ∝
n∑

i=1

k(s0,si)

where k is a kernel function, e.g., k(si ,sj) = exp(−φd2
ij )
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Inhomogeneous Poisson process with covariates

I Assume we have p spatial covariates X1(s), ...,Xp(s)

I Example: Xj(s) is the latitude of s

I Example: Xj(s) is the elevation of s

I Example: Xj(s) is the distance from s to the coast

I The regression model is log{λ(s)} = β0 +
∑p

j=1 Xj(s)βj

I The coefficients β = (β0, ..., βp) are interpreted just like
Poisson regression
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Inhomogeneous Poisson process with covariates

I The parameters can be estimated using MLE

I The conditional (given n) likelihood is

l(β) =
n∏

i=1

λ(si ;β)∫
D λ(s;β)ds

where λ(s;β) = exp{
∑p

j=1 Xj(s)βj}

I The integral is a problem and needs to be approximated

I The likelihood requires the covariates at all locations in D,
not just the n sample locations
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Strauss process for inhibition

I A Strauss process discourages pairs of observation to be
close to each other

I Let pr (s1, ...,sn) be the number of pair of points within r of
each other

I The joint PDF of the n sample location is

f (s1, ...,sn) ∝ exp{−βpr (s1, ...,sn)}

I The model (without covariates) has two parameters:
interaction radius r and repulsion strength β
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Strauss process for inhibition

I Estimating β and r informs us about interactions

I Example: study effects of social distancing by comparing
estimates of r and β before and after COVID-19

I Hard-core Strauss process: if β =∞ then observations
within r of each other are strictly prohibited

I Soft-core Strauss process: if β <∞ then observations
within r are discouraged

I CRS: if β = 0 then observations are independent

I Parameter estimate is difficult because the likelihood has a
complicated form
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Cluster process

I A Poisson cluster process is a way to model attraction
between events

I Below is a simple model, but there are others

I Let the parents u1, ...,uK be a sample from an HPP

I Parent k gives birth to mk ∼ Poisson children

I The children of parent k are distributed as

si ∼ Normal(uk , σ
2I2)
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