Spatial point pattern models

Applied Spatial Statistics

Spatial point pattern models

Statistical models for point pattern data have many uses:

- Predicting the location of the next event
- Testing for covariate effects
- Estimating the spatial range of interactions

Spatial point pattern models

We will study models that capture all types of interactions we have discussed:

- Homogeneous Poisson process
- Inhomogeneous Poisson process
- Inhomogeneous Poisson process with covariates
- Strauss process for inhibition
- Cluster process

Poisson process

- Let $\lambda(\mathbf{s})$ be the sampling intensity at location $\mathbf{s} \in \mathcal{D}$
- The expected number of observation in $\mathcal{B} \subset \mathcal{D}$ is the volume under the intensity function

$$
\lambda(\mathcal{B})=\int_{\mathcal{B}} \lambda(\mathbf{s}) d \mathbf{s}
$$

- The probability density function (PDF) is

$$
f(s)=\frac{1}{c} \lambda(\mathbf{s})
$$

where $c=\int_{\mathcal{D}} \lambda(\mathbf{s}) d \mathbf{s}$ is the normalizing constant

Poisson process intensity function, $\lambda(\mathbf{s})$

Random sample 1

Random sample 2

Random sample 3

Poisson process

A spatial point pattern is a Poisson process with intensity function $\lambda(\mathbf{s})$ if:

1. The number of samples in $\mathcal{B}, Y(\mathcal{B})$, is distributed

$$
Y(\mathcal{B}) \sim \operatorname{Poisson}\{\lambda(\mathcal{B})\}
$$

2. If \mathcal{B}_{1} and \mathcal{B}_{2} are disjoint, then $Y\left(\mathcal{B}_{1}\right)$ and $Y\left(\mathcal{B}_{2}\right)$ are independent

Random sample 4

Homogeneous Poisson process (HPP)

- An HPP has constant intensity, $\lambda(\mathbf{s})=\lambda_{0}$
- Therefore, expected counts are proportional to area

$$
\lambda(\mathcal{B})=\int_{\mathcal{B}} \lambda(\mathbf{s}) d \mathbf{s}=|\mathcal{B}| \lambda_{0}
$$

- The PDF is uniform,

$$
f(\mathbf{s})=\frac{\lambda(\mathbf{s})}{\int_{\mathcal{D}} \lambda(\mathbf{s}) d \mathbf{s}}=\frac{1}{|\mathcal{D}|}
$$

- Therefore, HPP is completely random sampling

Homogeneous Poisson process (HPP)

Steps to sample from an HPP:

- Draw $n \sim \operatorname{Poisson}\{\lambda(\mathcal{D})\}$ where $\lambda(\mathcal{D})=\lambda_{0}|\mathcal{D}|$
- Sample $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ uniformly and independently on \mathcal{D}

Inhomogeneous Poisson process (IPP)

- An IPP has spatially-varying intensity $\lambda(\mathbf{s})$
- The intensity function can be modeled similar to the mean function in geostatistics
- A parametric model regresses $\lambda(\mathbf{s})$ onto covariates
- A log-Gaussian Cox process assumes $\log \{\lambda(\mathbf{s})\}$ is a Gaussian process
- Kernel smoothing is nonparametric method to estimate $\lambda(\mathbf{s})$

IPP - Kernel density estimator (KDE)

- Let $\lambda(\mathbf{s})=f(\mathbf{s}) / c$ where $f(\mathbf{s})$ is the PDF and $\int_{\mathcal{D}} f(\mathbf{s}) d \mathbf{s}=1$
- Taking $c=1 / n$ gives $\hat{\lambda}(\mathcal{D})=n$
- Any density estimator can be used to estimate p
- Simple: partition \mathcal{D} into sub-regions and use the sample proportions in each sub-region to estimate f
- KDE is a smoother version of this,

$$
\hat{f}\left(\mathbf{s}_{0}\right) \propto \sum_{i=1}^{n} k\left(\mathbf{s}_{0}, \mathbf{s}_{i}\right)
$$

where k is a kernel function, e.g., $k\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=\exp \left(-\phi d_{i j}^{2}\right)$

Inhomogeneous Poisson process with covariates

- Assume we have p spatial covariates $X_{1}(\mathbf{s}), \ldots, X_{p}(\mathbf{s})$
- Example: $X_{j}(\mathbf{s})$ is the latitude of \mathbf{s}
- Example: $X_{j}(\mathbf{s})$ is the elevation of \mathbf{s}
- Example: $X_{j}(\mathbf{s})$ is the distance from \mathbf{s} to the coast
- The regression model is $\log \{\lambda(\mathbf{s})\}=\beta_{0}+\sum_{j=1}^{p} X_{j}(\mathbf{s}) \beta_{j}$
- The coefficients $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)$ are interpreted just like Poisson regression

Inhomogeneous Poisson process with covariates

- The parameters can be estimated using MLE
- The conditional (given n) likelihood is

$$
I(\boldsymbol{\beta})=\prod_{i=1}^{n} \frac{\lambda(\mathbf{s} ; \boldsymbol{s} ; \boldsymbol{\beta})}{\int_{\mathcal{D}} \lambda(\mathbf{s} ; \boldsymbol{\beta}) d \mathbf{s}}
$$

where $\lambda(\mathbf{s} ; \boldsymbol{\beta})=\exp \left\{\sum_{j=1}^{p} X_{j}(\mathbf{s}) \beta_{j}\right\}$

- The integral is a problem and needs to be approximated
- The likelihood requires the covariates at all locations in \mathcal{D}, not just the n sample locations

Strauss process for inhibition

- A Strauss process discourages pairs of observation to be close to each other
- Let $p_{r}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right)$ be the number of pair of points within r of each other
- The joint PDF of the n sample location is

$$
f\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right) \propto \exp \left\{-\beta p_{r}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right)\right\}
$$

- The model (without covariates) has two parameters: interaction radius r and repulsion strength β

Strauss process for inhibition

- Estimating β and r informs us about interactions
- Example: study effects of social distancing by comparing estimates of r and β before and after COVID-19
- Hard-core Strauss process: if $\beta=\infty$ then observations within r of each other are strictly prohibited
- Soft-core Strauss process: if $\beta<\infty$ then observations within r are discouraged
- CRS: if $\beta=0$ then observations are independent
- Parameter estimate is difficult because the likelihood has a complicated form

Cluster process

- A Poisson cluster process is a way to model attraction between events
- Below is a simple model, but there are others
- Let the parents $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$ be a sample from an HPP
- Parent k gives birth to $m_{k} \sim$ Poisson children
- The children of parent k are distributed as

$$
\mathbf{s}_{i} \sim \operatorname{Normal}\left(\mathbf{u}_{k}, \sigma^{2} \mathbf{I}_{2}\right)
$$

