Spatial point pattern models

Applied Spatial Statistics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spatial point pattern models

Statistical models for point pattern data have many uses:

Predicting the location of the next event

Testing for covariate effects

Estimating the spatial range of interactions

Spatial point pattern models

We will study models that capture all types of interactions we have discussed:

- Homogeneous Poisson process
- Inhomogeneous Poisson process
- Inhomogeneous Poisson process with covariates
- Strauss process for inhibition
- Cluster process

Poisson process

- Let $\lambda(\mathbf{s})$ be the sampling intensity at location $\mathbf{s} \in \mathcal{D}$
- ► The expected number of observation in B ⊂ D is the volume under the intensity function

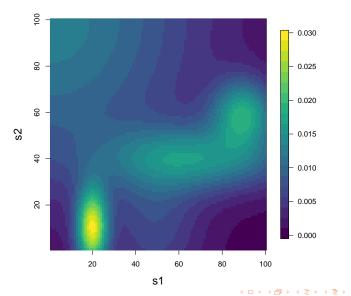
$$\lambda(\mathcal{B}) = \int_{\mathcal{B}} \lambda(\mathbf{s}) d\mathbf{s}$$

The probability density function (PDF) is

$$f(s) = \frac{1}{c}\lambda(\mathbf{s})$$

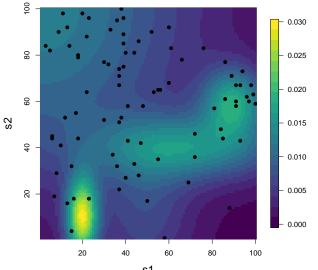
where $c = \int_{\mathcal{D}} \lambda(\mathbf{s}) d\mathbf{s}$ is the normalizing constant

Poisson process intensity function, $\lambda(\mathbf{s})$



5/19

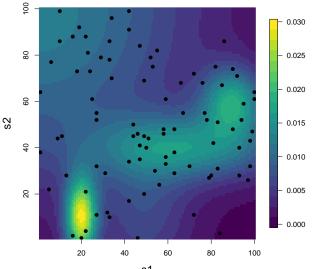
э



s1

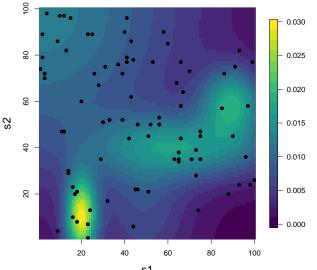
(日) 2

6/19



s1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



s1

(日) 2

8/19

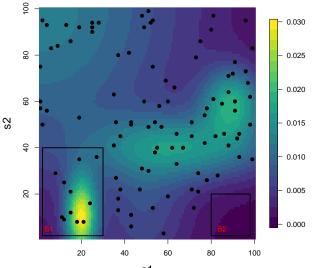
Poisson process

A spatial point pattern is a Poisson process with intensity function $\lambda(\mathbf{s})$ if:

1. The number of samples in \mathcal{B} , $Y(\mathcal{B})$, is distributed

 $Y(\mathcal{B}) \sim \mathsf{Poisson}\{\lambda(\mathcal{B})\}$

2. If \mathcal{B}_1 and \mathcal{B}_2 are disjoint, then $Y(\mathcal{B}_1)$ and $Y(\mathcal{B}_2)$ are independent



s1

・ロト・西・・ヨト・ヨト ヨー りへの

10/19

Homogeneous Poisson process (HPP)

• An HPP has constant intensity, $\lambda(\mathbf{s}) = \lambda_0$

Therefore, expected counts are proportional to area

$$\lambda(\mathcal{B}) = \int_{\mathcal{B}} \lambda(\mathbf{s}) d\mathbf{s} = |\mathcal{B}| \lambda_0$$

The PDF is uniform,

$$f(\mathbf{s}) = rac{\lambda(\mathbf{s})}{\int_{\mathcal{D}} \lambda(\mathbf{s}) d\mathbf{s}} = rac{1}{|\mathcal{D}|}$$

Therefore, HPP is completely random sampling

Homogeneous Poisson process (HPP)

Steps to sample from an HPP:

• Draw $n \sim \text{Poisson}\{\lambda(\mathcal{D})\}$ where $\lambda(\mathcal{D}) = \lambda_0 |\mathcal{D}|$

Sample $\mathbf{s}_1, ..., \mathbf{s}_n$ uniformly and independently on \mathcal{D}

Inhomogeneous Poisson process (IPP)

- An IPP has spatially-varying intensity $\lambda(\mathbf{s})$
- The intensity function can be modeled similar to the mean function in geostatistics
- A parametric model regresses $\lambda(\mathbf{s})$ onto covariates
- ► A log-Gaussian Cox process assumes log{λ(s)} is a Gaussian process
- Kernel smoothing is nonparametric method to estimate λ(s)

IPP - Kernel density estimator (KDE)

- Let $\lambda(\mathbf{s}) = f(\mathbf{s})/c$ where $f(\mathbf{s})$ is the PDF and $\int_{\mathcal{D}} f(\mathbf{s})d\mathbf{s} = 1$
- Taking c = 1/n gives $\hat{\lambda}(\mathcal{D}) = n$
- Any density estimator can be used to estimate p
- Simple: partition D into sub-regions and use the sample proportions in each sub-region to estimate f
- KDE is a smoother version of this,

$$\hat{f}(\mathbf{s}_0) \propto \sum_{i=1}^n k(\mathbf{s}_0, \mathbf{s}_i)$$

where k is a kernel function, e.g., $k(\mathbf{s}_i, \mathbf{s}_j) = \exp(-\phi d_{ij}^2)$

Inhomogeneous Poisson process with covariates

- Assume we have *p* spatial covariates $X_1(\mathbf{s}), ..., X_p(\mathbf{s})$
- Example: X_i(s) is the latitude of s
- Example: X_j(s) is the elevation of s
- Example: X_i(s) is the distance from s to the coast
- The regression model is $\log\{\lambda(\mathbf{s})\} = \beta_0 + \sum_{j=1}^p X_j(\mathbf{s})\beta_j$
- The coefficients β = (β₀,..., β_p) are interpreted just like Poisson regression

Inhomogeneous Poisson process with covariates

- The parameters can be estimated using MLE
- The conditional (given n) likelihood is

$$I(oldsymbol{eta}) = \prod_{i=1}^n rac{\lambda(oldsymbol{s}_i;oldsymbol{eta})}{\int_{\mathcal{D}}\lambda(oldsymbol{s};oldsymbol{eta})doldsymbol{s}}$$

where
$$\lambda(\mathbf{s}; \boldsymbol{\beta}) = \exp\{\sum_{j=1}^{p} X_j(\mathbf{s})\beta_j\}$$

- The integral is a problem and needs to be approximated
- The likelihood requires the covariates at all locations in D, not just the n sample locations

Strauss process for inhibition

- A Strauss process discourages pairs of observation to be close to each other
- Let p_r(s₁,...,s_n) be the number of pair of points within r of each other
- The joint PDF of the n sample location is

$$f(\mathbf{s}_1,...,\mathbf{s}_n) \propto \exp\{-\beta p_r(\mathbf{s}_1,...,\mathbf{s}_n)\}$$

The model (without covariates) has two parameters: interaction radius *r* and repulsion strength β

Strauss process for inhibition

- Estimating β and *r* informs us about interactions
- Example: study effects of social distancing by comparing estimates of *r* and β before and after COVID-19
- Hard-core Strauss process: if β = ∞ then observations within *r* of each other are strictly prohibited
- Soft-core Strauss process: if β < ∞ then observations within *r* are discouraged
- CRS: if $\beta = 0$ then observations are independent
- Parameter estimate is difficult because the likelihood has a complicated form

Cluster process

- A Poisson cluster process is a way to model attraction between events
- Below is a simple model, but there are others
- Let the parents $\mathbf{u}_1, ..., \mathbf{u}_K$ be a sample from an HPP
- Parent *k* gives birth to $m_k \sim$ Poisson children
- The children of parent k are distributed as

$$\mathbf{s}_i \sim \operatorname{Normal}(\mathbf{u}_k, \sigma^2 \mathbf{I}_2)$$