
ST433/533 Applied Spatial Statistics 

Lab activity for 9/2/2020 

 

A. CLARIFICATION QUESTIONS 

(1) I don't fully understand the idea behind the kappa in Matern model. The difference between matern 
and exponential is that the Matern is smoother. Looking at the formula, I don't understand what in the 
formula makes it smoother? 

Unfortunately, the formula is too complicated to help with intuition.  There is an even more complicated 
proof that shows nu/kappa determines the number of derivatives that exist before you get to white 
noise.   Realizations from the model are more informative.   

(2) In for example AIC ,  AIC = −2 log{L(βˆ, θˆ)} + 2k ;  2k penelizes models with larger numbers  of 
parameters. In −2 log{ MLE parameter estimates } part of the equation, what is  the −2 log doing for the 
estimate here, why chose  −2 log { }? 

This is well beyond the scope of this class, but FYI, AIC is derived in information theory as the distance 
between the fitted and true models, and the -2 arises from the measure of distance between these 
models.  Similarly, BIC approximates the Bayesian probability of the model, and the -2 just comes from 
this approximation.   As side note, for Gaussian data the log likelihood has a -SSE/2 in it, so by taking -
2*log_like that term becomes SSE. 

(3) A little more explanation on why you prefer BIC over AIC? 

It gives smaller models since the penalty term for the number of parameters is larger than for AIC.  This 
is just my preference, and AIC is just as popular as BIC, so don’t let me bias you. 

(4) In lecture 6b, while describing "Summarize regression coefficients" you mentioned that you do not 
trust the standard error, Z-score, and the P values, why is that? 

I think this was the SE, Z and p of a least squares regression that doesn’t account for spatial correlation.  
The simulation at the end of this document will hopefully convince you not to trust these values.  If the 
model does account for spatial correlation, I trust it.   

(5) Why we assume the covariance model to be "exponential" in the beginning?  

Exponential is just one simple example of a covariance function.  We have to start somewhere, right? 

(6) I have a question about the labs not the lectures. Is the plan to have labs every Wednesday or are 
you still planning to change them up to be on Mondays some weeks?  

Yes, the syllabus hard codes in Wednesday for discussion/lab. 



(7) If Σ is singular, can we use generalized inverse? 

Yes, but you have to be careful. GeoR doesn’t do this though so it will crash is Sigma if singular.  

(8) Under the anisotropy example, I notice that for the isotropic MLE estimation, this shows in the 
output:  
 
   anisotropy parameters:  
   (fixed) anisotropy angle = 0 ( 0 degrees ) 
   (fixed) anisotropy ratio = 1, 
 
and for the anisotropic MLE estimation, the output shows: 
 
   anisotropy parameters: 
   (estimated) anisotropy angle = 0.6926 ( 40 degrees ) 
   (estimated) anisotropy ratio = 11.46 
 
What do "angle" and "ratio" mean? Can you also briefly go through the example during lab meeting 
please? Thank you. 

The anisotropy model rotates the coordinates by “angle” radians, so s* = R(angle)s.  Then the correlation 
is exp(-d/rho) where  

  d^2 = ratio*(distance in the first coordinate of s*)^2 +  (distance in the second coordinate of s*) 

The isotropic model has angle 0, so no rotation, and ratio 1, so the same in all directions. 

(9) A large dataset must not be uncommon in spatial problems, so how do we deal with the 
computational complexity? In the video you said that for 1000s of observations, it can take very long to 
estimate the \Sigma matrix or construct the likelihood. What alternative ways can be used? In such a 
case if there is non-stationary correlation, splitting the dataset will have the added benefit of reducing 
computational complexity by running things in parallel? 

Yes, you will tackle this problem for your second midterm.  There are now many options, so I anticipate 
that this will be fun! 

 

  



B. STUDENT DISCUSSION QUESTIONS 

(1) How do we set the values of the initial_rho, initial_sigma^2 and initial_tau^2 in the beginning?  

First use a variogram, or maybe some background knowledge. 

(2) How to settle the interval range for unknown parameters like "tau_2 and sigma_2 in [0,3]" in slides 
14 since the maximum likelihood method could be time-consuming and initial values aren't so good?  

Variogram, or use an optimization algorithm that doesn’t need bounds. 

(3) On the figure showing the numerical optimization using iterations going "uphill", the MLE was 
different than the true sigma2 and tau2 that were used to build the model. Why is that?  

MLE isn’t going to get the true value, it’s just an estimate.  If we had a bigger dataset maybe it would get 
closer. 

(4) At what point is a more complex model worth it as opposed to a simpler model with a slightly higher 
BIC?  

It depends on which variables are considered important enough to exclude (maybe from other studies?), 
and maybe keep in mind that BIC often selects small models.   

(5) What other information criteria have you used in the past, and could they be applicable to our spatial 
analysis? 

Mallow’s Cp (BR, not sure if it can be used for spatial data?), cross-validation (spatial CV uses Kriging). 

(6) Depending on your AIC/BIC value, one can find which model is "better." Given that the likelihood 
function is part of AIC/BIC calculations, if you obtained the initial likelihood function from a different 
(non-Gaussian) parameter distribution, could you compare that AIC/BIC value to a model that used a 
Gaussian likelihood function (i.e. Y~Normal(mu,sig^2))? 

Yes, you can compare different parametric models for the data. BR: You can’t compare AIC for Y and AIC 
for log(Y).   

(7) It seems that both forward and backward selection chooses a local optimal covariate in each step. I 
wonder if this always gives us a global optimal selection of covariates. 

BR: There is no guarantee they will find the global optimal solution, in fact, with many covariates they 
almost certainly won’t. 

(8) When fitting a spatial model, we assume the data are gaussian, but what if they're log Normal 
instead? Can we use a log Normal distribution as our likelihood? 

BR: Yes!  Or anything else you think is appropriate.  We will discuss this more in the generalized linear 
model section. 

(9) Discuss why standard errors are unreliable with smaller datasets 



Some methods are based asymptotic arguments. Also, the SE for beta depends on theta, and for small 
datasets the theta estimates could be off.  

(10) In what situations would ignoring uncertainty of covariance, be harmful when using the "plug in" 
method for standard error? 

Always!  Unless uncertainty is small as for large datasets.   

 

  



C. BRIAN’S DISCUSSION QUESTIONS 

(1) What is the effect of selecting poor initial values for a maximum likelihood analysis? 

As long as the initial values aren’t too crazy you should get the same answer, but it might take more 
iterations if the initial values aren’t close to the MLE. 

(2) What are the pros and cons of variogram versus maximum likelihood analysis? 

Variogram is fast and easy to compute, MLE is more precise and rigorous. 

(3)  This question revolves around a simulation study.  In a simulation study, we generate many datasets 
from a model where we know the true values of the parameters, apply a statistical method to each 
dataset, and compare the estimates/test/intervals produced by the method to the true parameter 
values.  This used to understand when the method performs well, and to compare methods.  In this 
example, we evaluate the performance of non-spatial regression applied to spatial data. 

We simulate n=100 observations with s on the unit square, so s_1,s_2 are in (0,1) The data are Y = 
X*beta + Z + E where X and Z are Gaussian processes with exponential correlation and E is the nugget 
effect.  We can vary n, the true value of beta, the spatial range of X, and the spatial covariance 
parameters in Z and E.  For a set of true values, we simulate 1000 datasets, apply non-spatial least 
squares to each dataset, and then record the proportion of the datasets for which the 95% interval of 
beta includes the true value. 

(a) The code below takes the spatial range of X and Z to be 0.2, the nugget variance to be zero and true 
value of the partial sill and beta to be one.  Below is the histogram of the 1000 least squares estimates 
of beta and the coverage.  Summarize the method’s performance. 

 

Undercoverage, but it’s unbiased! 

(b) How do you expect the results to change when the sample size increases from 100 to 200? 



 

(c) How do you expect the results to change when the range of X changes from 0.2 to 0.02? 

 

(d) How do you expect the results to change when the range of Z changes from 0.2 to 0.02? 

 

(e) How do you expect the results to change when the nugget SD increases from 0 to 1? 



 

(f) What parameter value do you think would be the most problematic for the non-spatial regression? 

(g) Summarize the performance of non-spatial regression for spatial data.  When does it perform well?  
When does it perform poorly?  Why? 

Least squares is OK when the covariate or residuals have low spatial correlation.  In all other cases we 
tried coverage is too low, despite the fact that the estimate is unbiased. 

  



library(mvtnorm) 
set.seed(919) 
 
# True values of parameter 
n    <- 100 
rhox <- 0.2  # Spatial range for the covariate 
rhoz <- 0.2  # Spatial range for the errors 
tau  <- 0.0  # Nugget SD 
sig  <- 1.0  # Partial sill SD 
beta <- 1    # True value of beta 
 
s    <- cbind(runif(n),runif(n)) 
d    <- as.matrix(dist(s)) 
Sx   <- exp(-d/rhox) 
Sz   <- exp(-d/rhoz) 
 
nsims    <- 1000 # Number of datasets to generate 
 
# Space to store the output 
beta_hat <- beta_lo <- beta_hi <- rep(0,nsims) 
 
for(sim in 1:nsims){ 
 
  # Generate fake data 
  X   <- as.vector(rmvnorm(1,rep(0,n),Sx)) 
  Z   <- as.vector(rmvnorm(1,rep(0,n),Sz)) 
  Y   <- X*beta + sig*Z + rnorm(n,0,tau) 
 
  # Conduct a non-spatial least squares analysis 
  fit <- lm(Y~X) 
  ols <- summary(fit)$coef 
 
  beta_hat[sim] <- ols[2,1] 
  beta_lo[sim]  <- ols[2,1]-1.96*ols[2,2] 
  beta_hi[sim]  <- ols[2,1]+1.96*ols[2,2] 
} 
 
print(ols) # Check the form of the output for one (the last) dataset 

 
              Estimate Std. Error   t value     Pr(>|t|) 
(Intercept) -0.2265563 0.08675047 -2.611586 1.042877e-02 
X            1.2190238 0.09393041 12.977946 5.236577e-23 

 
# Compute the coverage of the 95% interval 
cov <- round(100*mean((beta_lo<beta) & (beta<beta_hi)),1) 
 
 
# This produces the plot above 
hist(beta_hat,breaks=50,xlim=c(0,2), 
     xlab="beta",ylab="Sampling distribution", 
     main=paste0("Coverage of 95% intervals = ",cov,"%")) 
abline(v=beta,col=2,lwd=2) 
 


