Spatial Partitioning

Group3 Nate Wiecha, Hongjian Yang, Shiyue Yao

Outline:

Description

- Motivation
- Types of partition strategies
- Model specification
- Spatial Partitioning v.s. Divide-and-conquer

Implementation

- Implementation processes
- Implementation details

Results

Motivation:

- Big data strategies
- (i) low rank

(ii) sparse covariance matrices: by introducing 0's into $\pmb{\Sigma}$

(iii) sparse precision matrices and

(iv) algorithmic

Spatial partitioning

• Spatial partitioning:

1) split the spatial domain into subregions

2) assume independence across subregions

3) compute likelihood simultaneously

 Advantage: sparse matrix computation and parallel programming

Types of partition strategies

- Priori methods:
 - Equal area partition
 - Partitioning based on centroid clustering
 - hierarchical clustering based on spatial gradients

Model based methods:

- Treed regression
- Mixture Modeling

Model specification

Basic settings:

 $Y = X\beta + H\omega^* + \xi + \varepsilon$

- where X is the design matrix; β are the regression coefficients;
- **H** is the N × K matrix of spatial basis functions with associated random coefficients $\boldsymbol{\omega}^* \sim N(\mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{\omega}^*}(\boldsymbol{\theta}))$;
- $\xi \sim N(0, \sigma_{\xi}^2)$; and $\varepsilon \sim N(0, \sigma_{\varepsilon}^2 i)$

Model specification

Spatial partitioning settings:

Let the spatial domain $\mathcal{D} = \bigcup_{d=1}^{D} \mathcal{D}_{d}$ where $\mathcal{D}_{1,...,\mathcal{D}_{D}}$ are subregions that form a partition.

for each = subregion $Y_d\{Y(s_i): s_i \in \mathcal{D}_d\}, d = 1, 2, ..., D$:

$$Y_d = X_d \beta + H_d \omega^* + \xi_d + \varepsilon_d$$

- where X_d is a design matrix containing covariates associated with Y_d ,
- H_d is a matrix of spatial basis functions
- ξ_d and ε_d are the sub-vectors of ξ and ε corresponding to region \mathcal{D}_d .
- each subregion shares common $\boldsymbol{\beta}$ and $\boldsymbol{\omega}^*$ parameters

Spatial Partitioning v.s. Divide-and-Conquer

- they are both strategies for **parallel programming**
- **Divide and conquer:** the full dataset is subsampled, the model is fit to each subset and the results across subsamples are pooled.
- **Spatial partition:** uses all the data simultaneously in obtaining estimates, but the independence across regions facilitates computation.

Implementation

- Implementation processes
- Implementation details

Implementation process —— Spatial partitioning

- Inherit functions and some codes from the author
 - For example, basis function creation and MLE functions
- Use nested for loops to control subsets and subregions
 - Most complicated part during implementation
- Use equal area method to partition regions
- Make predictions by clusters

Implementation process _____ Spatial partitioning(cont.)

- All codes run on High Performance Computing Cluster in the statistics department
- Packages:
 - LatticeKrig
 - parallel

Implementation process —— Standard MLE/Kriging

- First plot the variogram to estimate effective range, spatial variances and nugget
- Then apply MLE/Kriging from geoR package
- Run on High Performance Computing Cluster in the statistics
 department
- Packages:
 - \circ geoR

Implementation details —— Spatial partitioning

- Two tuning parameters:
 - Number of subregions and number of cores
- Number of subregions
 - More subregions, faster computation, less accuracy
 - $_{\odot}$ We tested 9, 12, and 25 subregions with 30 cores
- Number of cores
 - No effect on accuracy; More cores, faster computation
 - We test 2, 4, 9 cores with 9 subregions for demonstration
 - For 2 cores, we limit subsets to 12

Selecting parameters

- If possible, use as many cores as possible
 - Limited by hardware
 - Sometimes run into cpu error if occupying too many cores
- More subregions can improve computational speed
 tremendously, with little compromise on accuracy
 - Some regions have very few or no data: need manual adjustment

Implementation details —— Standard MLE/Kriging

- First-order covariate matrix
 - Second-order covariate matrix always gets a "singular matrix" error message
- Super slow
 - Five subsets take more than 2 hours to compute!

Results

Comparison to Standard MLE: Time

Comparison to MLE: RMSE

Nate Wiecha

Parallel Computing

Computing Time Required For Different Data Sizes and Number of Cores

Number of Partitions: RMSE

Number of Partitions: Time

Conclusions

•Much, much faster than standard MLE/Kriging due to parallel computing

- •Not much less accurate than standard methods
- •More regions leads to faster computation, comparable accuracy with this dataset
- •Presumably there is a tradeoff at some point