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Motivation
• The method of approximating a continuous Gaussian field using GMRFs 

was theoretically good but less practical. The SPDE method represents a 
Gaussian field with Matern covariance by representing a solution of 
stochastic partial differential equations as a GMRF using the finite element 
method.

• The GMRF representation of the Gaussian field, which can be computed 
explicitly, provides a sparse representation of the spatial effect through a 
sparse precision matrix. This enables the nice computational properties of 
the GMRFs which can then be implemented in the INLA package.

Sibo Peng



The SPDE Model
•y | β0, u, σe

2∼ N(β0 + Au, σe
2)

•u ∼ GF(0,Σ)
•yi are observations at location si.
•β0 is the intercept
•u is a spatial Gaussian random field with mean zero and standard deviation Σ
•A is the projector matrix
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Mesh
• Points are often distributed irregularly. Need to 

construct mesh
• Mesh is used in the Finite Element Method to 

provide a solution to a SPDE. 

• To better approximate the field, need to have 
more triangles.

• Shiny application within INLA package: 
meshbuilder()

Sibo Peng



Understanding the Method
• A Gaussian field with a generalized covariance function 

obtained in the Matérn correlation function when ν>0 is a 
solution to a SPDE.

• Consider a regular two-dimensional lattice with number of 
sites tending to infinity.

• The right figure is an example of a GMRF. Another 
example is AR(1) process

• The GMRF representation is a convolution of processes 
with precision matrix for distinct values of smoothness ν

• As the smoothness parameter ν increases, the precision 
matrix in the GMRF representation becomes denser. This 
is because the conditional distributions depend on a wider 
neighborhood.

Sibo Peng



How Approximation Works

• Illustrate the approximation in two-dimensional space considering 
piecewise linear basis functions.

• where 𝜓𝜓𝑘𝑘 are basis functions and 𝑊𝑊𝑘𝑘 are Gaussian distributed 
weights, k=1,...,m with m the number of vertices in the triangulation.

• Carefully choose the basis functions to preserve the sparse 
structure of the resulting precision matrix for the random field at a 
set of mesh nodes.

• This provides an explicit link between a continuous random field and 
a GMRF representation, which allows efficient computations.

Sibo Peng



To Build a 2-D Mesh

inla.mesh.2d() function
Mandatory arguments:
• loc, loc.domain, or boundary
• max.edge: inner domain,

outer extension
Optional arguments:
• cutoff
• offset
• min.angle
• n

INLA package in R

J. Wang* Image is taken from https://becarioprecario.bitbucket.io/spde-gitbook/index.html



Non-convex Hull Meshes

• boundary <- inla.nonconvex.hull(points = , convex = , concave = , resolution = ,…)
R Shiny app: meshbuilder(); 

* Images are taken from https://becarioprecario.bitbucket.io/spde-gitbook/index.html J. Wang



Quality of A Mesh
• Goal: Uniform triangle shape and size

mesh <- inla.mesh.2d(  loc = coordinates,
max.edge = c(<inner domain>, <outer extension>),

cutoff = <a numeric value>,
offset = -0.10 <default>  )

• To create the projector matrix (A matrix) from the mesh:
A <- inla.spde.make.A(mesh, loc = coordinates)

J. Wang



Problem
• Distance is too small:

Range(longitude) = 0.44 degrees, range(latitude) = 0.21 degrees

• Re-scale the coordinates:
(longitude + 96) ×10; (latitude - 41) ×10

• Number of nodes for n = 20,000:
i.   node = 3,312:    max.edge = c(0.1, 1), cutoff = 0.05
ii.  node = 5,962:    max.edge = c(0.08, 0.8), cutoff = 0.03
iii. node = 34,861:  max.edge = c(0.03, 0.7), cutoff = 0.01

J. Wang



The SPDE Model Construction
• y | 𝛽𝛽0, u, 𝜎𝜎𝑒𝑒2 ~ 𝑁𝑁 𝛽𝛽0 + 𝐀𝐀𝐀𝐀,𝜎𝜎𝑒𝑒2

• u ~ 𝐺𝐺𝐺𝐺 0, Σ
• Matern covariance with Penalized Complexity prior: 

inla.spde2.pcmatern()
i. 𝛼𝛼 ∈ [1, 2]; 𝛼𝛼 = 𝜐𝜐 + ⁄𝑑𝑑 2 = 2 <default> 
ii. 𝑃𝑃 𝜎𝜎 > 𝜎𝜎0 = 𝑝𝑝 ⇒ 𝑃𝑃 𝜎𝜎 > 1 = 0.01: 

prior.sigma = c(1, 0.01)
iii. 𝑃𝑃 𝑟𝑟 < 𝑟𝑟0 = 𝑝𝑝 ⇒ 𝑃𝑃 𝑟𝑟 < 1.3 = 0.5: 

prior.range = c(1.3, 0.5)
J. Wang



MLE & SPDE Run Time

● MLE Estimation passed over one hour on fourth group
● SPDE Models runtime did not increase exponentially
● SPDE Model with most nodes (~33,000) stayed under half hour with all groups

Cole Adams



Performance Across Group Size

● Kriging using MLE Estimation & SPDE showed a decline in MSE as size increased
○ SPDE models with higher node counts decreased more significantly than SPDE models with 

smaller node counts
● Coverage stayed relatively consistent in MLE and SPDE estimation when node count was high 

(3000, 5500, 33000) but decreased in coverage as size increased when node counts were small
Cole Adams



MAD & MSE

● Kriging methods using SPDE estimation with node size >3,000 performed better than MLE models
● Conversely SPDE estimation with node sizes 300, 470 and 600 performed worse than the MLE 

estimation

Cole Adams



Coverage vs. Correlation

● Kriging using MLE Estimation had the highest coverage with ~95%
● As the number of nodes increased, coverage increased for SPDE-based Kriging methods
● SPDE methods using nodes 3,000, 5,500 and 33,000 resulted in higher levels of correlation than the 

MLE estimation

Cole Adams



Methods Overview

Cole Adams

● The predictions made with Kriging using the 
SPDE estimation better correlate with the test 
set.

● Additionally, it better matches the test data set 
in terms of the histogram, with more of the tails 
captured

● The predictions made with Kriging using the 
MLE estimation do not capture the tails of the 
test set and are more centered around the 
central value
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