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Motivation

 The method of approximating a continuous Gaussian field using GMRFs
was theoretically good but less practical. The SPDE method represents a
Gaussian field with Matern covariance by representing a solution of
stochastic partial differential equations as a GMRF using the finite element
method.

« The GMRF representation of the Gaussian field, which can be computed
explicitly, provides a sparse representation of the spatial effect through a
sparse precision matrix. This enables the nice computational properties of
the GMRFs which can then be implemented in the INLA package.

Sibo Peng
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The SPDE Model

*Y | Bo, U, 0c° ~ N(By + Au, 0.%)

u ~ GF(0,2)

ey, are observations at location s.

3, is the intercept

U is a spatial Gaussian random field with mean zero and standard deviation %
*A is the projector matrix

Sibo Peng
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Mesh

» Points are often distributed irregularly. Need to
construct mesh

 Mesh is used in the Finite Element Method to
provide a solution to a SPDE.

» To better approximate the field, need to have
more triangles.

« Shiny application within INLA package:
meshbuilder() <

Sibo Peng



NC STATE UNIVERSITY

Understanding the Method

O

Ujj1

» A Gaussian field with a generalized covariance function
obtained in the Matérn correlation function when v>0 is a
solution to a SPDE.

» Consider a regular two-dimensional lattice with number of
sites tending to infinity.

* The right figure is an example of a GMRF. Another Uit thi Yirtd
example is AR(1) process

 The GMRF representation is a convolution of processes
with precision matrix for distinct values of smoothness v

* As the smoothness parameter v increases, the precision .
matrix in the GMRF representation becomes denser. This

Is because the conditional distributions depend on a wider
neighborhood. @ °° @

Sibo Peng
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How Approximation Works

* lllustrate the approximation in two-dimensional space considering
piecewise linear basis functions.

u(s) = }nzl Yi ()W

« where vy, are basis functions and W, are Gaussian distributed
weights, k=1,...,m with m the number of vertices in the triangulation.

» Carefully choose the basis functions to preserve the sparse ' '
structure of the resulting precision matrix for the random field at a
set of mesh nodes.

» This provides an explicit link between a continuous random field and
a GMRF representation, which allows efficient computations.

Sibo Peng
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* Image is taken from https://becarioprecario.bitbucket.io/spde-gitbook/index.html

INLA package in R

inla.mesh.2d() function

Mandatory arguments:

* loc, loc.domain, or boundary

* max.edge: inner domain,
outer extension

Optional arguments:

e cutoff
* offset

* min.angle
°n

To Build a 2-D Mesh

J. Wang
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Non-convex Hull Meshes

Debug
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e boundary <- inla.nonconvex.hull(points =, convex =, concave =, resolution =,...)
R Shiny app: meshbuilder();

* Images are taken from https://becarioprecario.bitbucket.io/spde-gitbook/index.html J. Wang



NC STATE UNIVERSITY

Quality of A Mesh

e Goal: Uniform triangle shape and size
mesh <- inla.mesh.2d( loc = coordinates,
max.edge = c(<inner domain>, <outer extension>),
cutoff = <a numeric value>,
offset = -0.10 <default> )

* To create the projector matrix (A matrix) from the mesh:

A <- inla.spde.make.A(mesh, loc = coordinates)

J. Wang
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Problem

 Distance is too small:
Range(longitude) = 0.44 degrees, range(latitude) = 0.21 degrees

 Re-scale the coordinates:
(longitude + 96) x10; (latitude - 41) x10

 Number of nodes for n = 20,000:
I. node =3,312: max.edge =¢(0.1, 1), cutoff = 0.05
ii. node =5,962: max.edge = ¢(0.08, 0.8), cutoff = 0.03
lii. node = 34,861: max.edge = c¢(0.03, 0.7), cutoff = 0.01

J. Wang
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The SPDE Model Construction
+ Y| Bo U, ~N(Bo + Au,0¢)
u-~GF(Q0,X%)

Matern covariance with Penalized Complexity prior:
inla.spde2.pcmatern()

. a €[1,2];a=v+ ¢/, =2 <default>

i. P(c >0y) =p=P(oc>1)=0.01:
prior.sigma = c(1, 0.01)

ii. P(r<ry) =p=P(r<13)= 05:
prior.range = c(1.3, 0.5)

J. Wang
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MLE & SPDE Run Time
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e MLE Estimation passed over one hour on fourth group
e SPDE Models runtime did not increase exponentially
e SPDE Model with most nodes (~33,000) stayed under half hour with all groups

Cole Adams
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Performance Across Group Size
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e Kriging using MLE Estimation & SPDE showed a decline in MSE as size increased
o  SPDE models with higher node counts decreased more significantly than SPDE models with
smaller node counts
e Coverage stayed relatively consistent in MLE and SPDE estimation when node count was high
(3000, 5500, 33000) but decreased in coverage as size increased when node counts were small

Cole Adams
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MAD & MSE
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e Kriging methods using SPDE estimation with node size >3,000 performed better than MLE models
e Conversely SPDE estimation with node sizes 300, 470 and 600 performed worse than the MLE
estimation

Cole Adams



NC STATE UNIVERSITY

Coverage vs. Correlation
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Kriging using MLE Estimation had the highest coverage with ~95%
As the number of nodes increased, coverage increased for SPDE-based Kriging methods
SPDE methods using nodes 3,000, 5,500 and 33,000 resulted in higher levels of correlation than the

MLE estimation

Cole Adams
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Methods Overview
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