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Full Gaussian Process (GP)
Spatial linear mixed effects :

𝑦𝑦 𝒔𝒔𝑖𝑖 = 𝑋𝑋(𝒔𝒔𝑖𝑖)𝑇𝑇𝜷𝜷 + 𝑤𝑤 𝒔𝒔𝑖𝑖 + 𝜀𝜀(𝒔𝒔𝑖𝑖) (1)

𝜷𝜷 ∶ regression coefficients, 
𝒘𝒘 𝒔𝒔 ∶ random spatial effect at a specific site, 𝜺𝜺 ∶ non-spatial random noise 

𝒘𝒘 follows a zero-mean multivariate Gaussian distribution with covariance matrix 𝐶𝐶 𝜽𝜽 , and 
𝜺𝜺 consists of iid Gaussian with mean 0 and variance 𝜏𝜏2.

𝑦𝑦~ 𝑁𝑁 𝑿𝑿𝛽𝛽,𝐶𝐶 𝜽𝜽 + 𝜏𝜏2𝑰𝑰 (2)

Frequentist approach : Maximize the likelihood of y with respect to 𝛽𝛽, 𝜏𝜏2, and 𝜽𝜽

Bayesian framework : Assign priors to parameters in eq. 2 to obtain posterior inferences via 

Markov chain Monte Carlo (MCMC) 



Motivation
The Full GP is computationally expensive for large datasets (e.g., LandSAT data)

• Inverting the dense 𝒏𝒏 𝒙𝒙 𝒏𝒏 covariance matrix involves 𝑶𝑶(𝒏𝒏𝟐𝟐) storage and 𝑶𝑶(𝒏𝒏𝟑𝟑) computations

• Solution : It is better to deal with a low rank model or a sparse covariance matrix

• Nearest Neighbors Gaussian Process (NNGP) is one such method which uses a sparse 

covariance matrix to analyze large spatial datasets.



Nearest Neighbor Gaussian Process (NNGP)
Sparsity is introduced by specifying a conditional joint distribution in the spatial random effect, 
w(s), where,

𝑤𝑤 𝑠𝑠𝑖𝑖 |𝑤𝑤1: 𝑖𝑖−1 = 𝐶𝐶 𝒔𝒔1, 𝒔𝒔1: 𝑖𝑖−1 ∑1: 𝑖𝑖−1
−1 𝑤𝑤1: 𝑠𝑠−1 + 𝜼𝜼(𝑠𝑠𝑖𝑖) (3)

𝑤𝑤1: 𝑖𝑖−1 is replaced by a smaller set of m nearest neighbors of 𝑠𝑠𝑖𝑖
∑1: 𝑖𝑖−1
−1 is the covariance matrix from the previous sites

𝜂𝜂′s are independent Gaussian with mean zero

Collectively, 𝑤𝑤 can be expressed as,

𝑤𝑤 = 𝑨𝑨𝑤𝑤 + 𝜼𝜼 (4)

Where, A is a lower triangular matrix with at most m, non-zero entries in each row 



Nearest Neighbor Gaussian Process (NNGP)
𝑤𝑤~𝑁𝑁(0,𝐶𝐶 𝜽𝜽 ) (5)

• NNGP constructs a sparse covariance matrix 𝐶𝐶 𝜽𝜽 −1 and evaluates the likelihood of (4) using 

only 𝑶𝑶(𝒏𝒏𝟏𝟏) storage. The new sparse model is,

𝑦𝑦~𝑁𝑁(𝑋𝑋𝛽𝛽, ∑(ɸ)) (6)

Where,

∑(ɸ) is the sparse covariance matrix derived from the full GP model



Nearest Neighbor Gaussian Process (NNGP)

W1:1 W1:2 W1:3 W1:4 W1:5
W1:1 0
W1:2 0.8 0

W(Si) = W1:3 0.5 0.7 0
W1:4 0.2 0.6 0.9 0
W1:5 0.01 0.3 0.4 0.6 0

For M = 5…

𝑤𝑤 𝑠𝑠𝑖𝑖 |𝑤𝑤1: 𝑖𝑖−1 = 𝐶𝐶 𝒔𝒔1, 𝒔𝒔1: 𝑖𝑖−1 ∗ ∑1: 𝑖𝑖−1
−1 ∗ 𝑤𝑤1: 𝑠𝑠−1 +𝜼𝜼(𝑠𝑠𝑖𝑖)

A w 𝜼𝜼(𝑠𝑠𝑖𝑖)* +

+ 𝜼𝜼(𝑠𝑠𝑖𝑖)*

𝑤𝑤 = 𝑨𝑨𝑤𝑤 + 𝜼𝜼

General Equation:
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Goal and Objectives

Goal
• Implement the NNGP method (latent or response or conjugate) and compare results to classical 

likelihood technique, i.e, MLE
• Comparison in terms of time efficiency and prediction performance

Procedure
• Pick a covariance model for fitting a spatial model to the given dataset
• For LandSAT-generated data, we pick the exponential covariance model
• Use the latent NNGP (Bayesian) model and MLE to estimate the model parameters 𝛽𝛽, σ𝑤𝑤2 , 𝜏𝜏2 ,𝑎𝑎𝑎𝑎𝑎𝑎 ɸ
• Predict the response Y(s) at 1000 test locations using equation 9   

(7)𝑤𝑤(s) ∣ 𝑤𝑤1:𝑛𝑛 = 𝑎𝑎𝑎(𝑠𝑠)𝑤𝑤1:𝑛𝑛 + 𝜼𝜼(𝑠𝑠)



Implementation – Basic setup
• Data: LandSAT (n = 937,208)

• Data was subset to 21 groups of 1000 observations each: 20 training groups 

and 1 testing group

• NA values were removed after sub-setting data

• R package: “spNNGP” (Finley, Datta, Banerjee (2020))



Implementation – setup for NNGP
• Latent NNGP was the specific method used, which is based on a Bayesian approach

• R Function used : spNNGP()

• Decide priors for the parameters 

• Theoretically, max number of neighbors = 25 should give a good approximation

• For a Bayesian approach, convergence of parameter estimates is crucial

• Performance is affected by number of neighbors, number of MCMC iterations

• Number of Neighbors used: 5, 10, and 15

Intended Number of MCMC iterations: 30,000

Intended Burned iterations: 5000

• Final MCMC iterations = 5000, burned = 1000



Implementation – R code snippet

A for loop was ran for val = 20 iterations:
• Loop 1 used g=1 as training
• Loop 2 used g = 1,2 as training
• Loop n used g = 1,…,n as training



Results : Run-time for NNGP and MLE



Results : Trace plots for nngp
Parameter 5 neighbors 10 neighbors 15 neighbors

𝛽𝛽0

𝛽𝛽1

𝛽𝛽2

σ𝑤𝑤2

𝜏𝜏2

ɸ



Results : Parameter estimates
Parameter
(neighbors = 5)

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 σ𝑤𝑤2 𝜏𝜏2 ɸ

Estimate(se) 75.47(37.00) 0.25(0.32) -1.23(0.19) 28.91(11.38) 0.006(0.0001) 0.091 (0.036)

Parameter
(neighbors = 10)

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 σ𝑤𝑤2 𝜏𝜏2 ɸ

Estimate(se) -35.65 (187.68) -0.09(0.07) 0.65(4.66) 25.89(9.03) 0.0005(0.00004) 0.09(0.02)

Parameter
(neighbors = 15)

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 σ𝑤𝑤2 𝜏𝜏2 ɸ

Estimate(se) -155.38 (190.58) -0.11 (0.10) 3.48 (4.82) 33.65(6.49) 0.0006 (0.00001) 0.06 (0.01)

Parameter
(mle)

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 σ𝑤𝑤2 𝜏𝜏2 ɸ

Estimate(se) 199.34 (126.94) -0.03(0.09) 4.72(3.18) 0.01 0 0.003



Prediction performance for NNGP(10 neighbors)



Prediction performance for MLE
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