Nearest Neighbor Gaussian Process (NNGP)

By: Mariya Harris, Vaidehi Dixit, and Enrique Pena STAT 433/533 Applied Spatial Statistics Midterm 2 10/14/2020

Full Gaussian Process (GP)

Spatial linear mixed effects :

$$y(\boldsymbol{s}_i) = X(\boldsymbol{s}_i)^T \boldsymbol{\beta} + w(\boldsymbol{s}_i) + \varepsilon(\boldsymbol{s}_i)$$
(1)

 $\boldsymbol{\beta}$: regression coefficients,

w(s) : random spatial effect at a specific site, ε : non-spatial random noise

w follows a **zero-mean multivariate Gaussian distribution** with covariance matrix $C(\theta)$, and ε consists of iid Gaussian with mean 0 and variance τ^2 .

$$y \sim N(\boldsymbol{X}\boldsymbol{\beta}, C(\boldsymbol{\theta}) + \tau^2 \boldsymbol{I})$$
 (2)

Frequentist approach : Maximize the likelihood of y with respect to β , τ^2 , and θ

Bayesian framework : Assign priors to parameters in eq. 2 to obtain posterior inferences via

Markov chain Monte Carlo (MCMC)

Motivation

The Full GP is **computationally expensive** for large datasets (e.g., LandSAT data)

• Inverting the dense $n \ge n$ covariance matrix involves $O(n^2)$ storage and $O(n^3)$ computations

• Solution : It is better to deal with a *low rank* model or a *sparse covariance matrix*

• Nearest Neighbors Gaussian Process (NNGP) is one such method which uses a sparse covariance matrix to analyze large spatial datasets.

Nearest Neighbor Gaussian Process (NNGP)

Sparsity is introduced by specifying a conditional joint distribution in the spatial random effect, w(s), where,

$$w(s_i)|w_{1:(i-1)} = C(s_1, s_{1:(i-1)}) \sum_{1:(i-1)}^{-1} w_{1:(s-1)} + \eta(s_i)$$
(3)

 $w_{1:(i-1)}$ is replaced by a smaller set of **m nearest neighbors** of s_i $\sum_{1:(i-1)}^{-1}$ is the covariance matrix from the previous sites η 's are independent Gaussian with mean zero Collectively, w can be expressed as,

$$w = Aw + \eta \tag{4}$$

Where, **A** is a lower triangular matrix with at most m, non-zero entries in each row

Nearest Neighbor Gaussian Process (NNGP)

$$w \sim N(0, C(\boldsymbol{\theta})) \tag{5}$$

• NNGP constructs a sparse covariance matrix $C(\theta)^{-1}$ and evaluates the likelihood of (4) using only $O(n^1)$ storage. The new sparse model is,

$$y \sim N(X\beta, \Sigma(\Phi))$$
 (6)

Where,

 $\Sigma(\Phi)$ is the sparse covariance matrix derived from the full GP model

Nearest Neighbor Gaussian Process (NNGP)

General Equation: $w(s_i)|w_{1:(i-1)} = C(s_1, s_{1:(i-1)}) * \sum_{1:(i-1)}^{-1} * w_{1:(s-1)} + \eta(s_i)$

Goal and Objectives

Goal

- Implement the NNGP method (latent or response or conjugate) and compare results to classical likelihood technique, i.e, MLE
- Comparison in terms of time efficiency and prediction performance

Procedure

- Pick a covariance model for fitting a spatial model to the given dataset
- For LandSAT-generated data, we pick the exponential covariance model
- Use the latent NNGP (Bayesian) model and MLE to estimate the model parameters β , σ_w^2 , τ^2 , and ϕ
- Predict the response Y(s) at 1000 test locations using equation 9

$$w(s) \mid w_{1:n} = a'(s)w_{1:n} + \eta(s)$$
(7)

Implementation – Basic setup

- Data: LandSAT (n = 937,208)
- Data was subset to 21 groups of 1000 observations each: 20 training groups and 1 testing group
- NA values were removed after sub-setting data
- R package: "spNNGP" (Finley, Datta, Banerjee (2020))

Implementation – setup for NNGP

- Latent NNGP was the specific method used, which is based on a Bayesian approach
- R Function used : spNNGP()
- Decide priors for the parameters
- Theoretically, max number of neighbors = 25 should give a good approximation
- For a Bayesian approach, convergence of parameter estimates is crucial
- Performance is affected by number of neighbors, number of MCMC iterations
- Number of Neighbors used: 5, 10, and 15

Intended Number of MCMC iterations: 30,000

Intended Burned iterations: 5000

• Final MCMC iterations = 5000, burned = 1000

Implementation – R code snippet

Priors

n.samples <- 5000
starting <- list("phi"=0.05, "sigma.sq"=1, "tau.sq"=1)
priors <- list("phi.Unif"=c(0.05, 1/0.1), "sigma.sq.IG"=c(2, 1), "tau.sq.IG"=c(2, 1))
cov.model <- "exponential"
tuning <- list("phi"=0.2)</pre>

tick = Sys.time()

Latent NNGP model

sim.p[[val]] <- predict(sim.s[[val]],</pre>

X.0=cbind(1,x.ho), coords.0=coords.ho, sub.sample=list(start=1000, thin=10), n.omp.threads = 4, n.report=1000)

tock = Sys.time()
nngp_time_5[val] = difftime(tock, tick, units = "secs")

A for loop was ran for *val* = 20 iterations:

- Loop 1 used g=1 as training
- Loop 2 used g = 1,2 as training
- Loop n used g = 1,...,n as training

Results : Run-time for NNGP and MLE

Parameter 5 neighbors

10 neighbors

15 neighbors

Results : Parameter estimates

Parameter (neighbors = 5)		eta_0		β_1		eta_2		σ_w^2		$ au^2$		ф		
Estimate(se)	75.4	75.47(37.00)		0.25(0.32)		-1.23(0.19)		1(11	38) 0.006		6(0.0001) 0.09		091 (0.036)	
Parameter (neighbors = 10	neter β_0 nbors = 10)		β_1		β_1	β ₂			σ_w^2		$ au^2$		ф	
Estimate(se)	-35.65 (187.68)	-0.09(0.07)		0.65	0.65(4.66)		25.89(9.03)		0.0005(0.00004)		0.09(0.02)	
Parameter (neighbors = 15	ameter β_0 ghbors = 15)		β_1			β_2			σ_w^2		$ au^2$			ф
Estimate(se)	-155.38 (190.58)		-0.11 (0.10))	3.48 (4.82)			33.65(6.49)		0.0006 (0.0000		01) 0.06 (0.01)	
Parameter (mle)		β_0		eta_1		β_2			σ_w^2	$ au^2$				ф
Estimate(se)	199.3	99.34 (126.94) -(-0.03(0.09)		4.72(3.18)		0.01			0		0.003	

Prediction performance for NNGP(10 neighbors)

Prediction performance for MLE

