# ST 533 Final: Modeling Spatiotemporal Trends in Political Poll Bias

Ziyang Jiang, Mingkang Zheng, Tyler Schappe

# Introduction

#### Objectives

- 1. Define the weights used to calculate polling averages
- 2. Test whether there is systematic polling bias under the assumption that the bias is constant over state and election
- 3. Test whether the bias varies by state and/or election and display the estimated bias

Outline

- Methods
- Results
- Conclusions

# Weights

• The polling average: 
$$X_{it} = \sum_{j=1}^{N_t} w_{itj} P_{jt}$$
  $\longleftrightarrow$   $w_{itj} = 0.5 \times s_{itj} + 0.5 \times d_{itj}$ 

Based on the poll's sample size: polls that sample more voters receive a larger weight

 $s_{itj} = \frac{Poll \, j's \, sample \, size \, in \, state \, i \, in \, year \, t}{Sum \, of \, sample \, size \, for \, all \, polls \, in \, state \, i \, in \, year \, t}$ 

Based on how recently it was conducted: more emphasis is placed on recency

$$d_{itj} = \frac{F(Poll \, j's \, days \, to \, election \, in \, state \, i \, in \, year \, t)}{Sum \, of \, F(Days \, to \, election) \, for \, all \, polls \, in \, state \, i \, in \, year \, t} \qquad {}^{*}F(x) = \frac{1}{x}$$
(older polls are penalized)

# **Methods**

- Package: CARBayesST
  - Model for capturing the spatial-temporal autocorrelation in data via random effects
  - Generalized linear mixed model

$$Y_{kt}|\mu_{kt} \sim f(y_{kt}|\mu_{kt},\nu^2) \quad \text{for } k = 1,\ldots,K, \quad t = 1,\ldots,N, \quad (1)$$
  

$$g(\mu_{kt}) = \mathbf{x}_{kt}^\top \boldsymbol{\beta} + O_{kt} + \psi_{kt}, \quad \boldsymbol{\beta} \sim \mathbf{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}).$$

• ST.CARar() : one of the models for  $\psi$  (Spatio-temporal random effects)

$$\begin{aligned} \psi_{kt} &= \phi_{kt}, \\ \boldsymbol{\phi}_t | \boldsymbol{\phi}_{t-1} &\sim \operatorname{N}\left(\rho_T \boldsymbol{\phi}_{t-1}, \tau^2 \mathbf{Q}(\mathbf{W}, \rho_S)^{-1}\right) \qquad t = 2, \dots, N, \\ \boldsymbol{\phi}_1 &\sim \operatorname{N}\left(\mathbf{0}, \tau^2 \mathbf{Q}(\mathbf{W}, \rho_S)^{-1}\right), \end{aligned}$$

# **Methods**

- ST.CARar() : the spatio-temporal random effects follows a **multivariate AR(1) process** 
  - Important parameters  $\beta$ : coefficients of covariates  $v^2$ : nugget variance  $\tau^2$ : spatio-temporal variance parameter  $\rho_S, \rho_T$ : spatial or temporal dependence parameters
  - Manually change default priors to fit our data:  $v^2 \sim InvGamma(1, 0.1), \tau^2 \sim InvGamma(0.5, 3)$
  - State adjacency matrix **W**: Border adjacency,  $w_{ij} = \begin{cases} 1, if state i and j share a common border \\ 0, otherwise \end{cases}$ \*Delete states Alaska & Hawaii (no neighbors)
  - State i = 1, 2, … 49; Year t = 2012, 2016, 2020

\*In this model, **missing values (NA) are allowed in the response data**, and they can be estimated during fitting model

# **Covariates**

| Covariate | Description                                                             |  |
|-----------|-------------------------------------------------------------------------|--|
| Turnout   | VEP(voting-eligible population) turnout rate for all state i and year t |  |
| Income    | Household income for all state i and year t                             |  |
| Pop.dens  | Population density for all state i and year t                           |  |
| Age       | % 65 years or older (of total population) for all state i and year t    |  |
| Year      | indicator variables for 2012, 2016, 2020 election years                 |  |
| State     | indicator variables for 49 states                                       |  |

\*Some covariates didn't use data from the election years.

Ex: for Age variable, we used the data from 2019 as the data for t = 2020

# Models

• Similar model setting, different covariates

| Objective | Model                             | Covariate                                                                  | Feature                               |
|-----------|-----------------------------------|----------------------------------------------------------------------------|---------------------------------------|
| 2         | Null model                        | Turnout, Income, Pop. dens, Age                                            | No fixed effects                      |
| 3         | Full model                        | <mark>Year</mark> , <mark>State</mark> , Turnout, Income, Pop.dens,<br>Age | Fixed election year & state<br>effect |
|           | By Election Year model (no state) | Year, Turnout, Income, Pop. dens, Age                                      | Only fixed election year<br>effect    |
|           | By State model (no election year) | State, Turnout, Income, Pop.dens, Age                                      | Only fixed state effect               |

Specifically, the mean term for each model would be:

 $\beta_0 + \beta_1 Turnout + \beta_2 Income + \beta_3 Pop. dens + \beta_4 Age$ 

$$\beta_0 + \beta_1 Turnout + \beta_2 Income + \beta_3 Pop. dens + \beta_4 Age + \beta_5 2016 + \beta_6 2020 + \beta_{k+6} State_k$$

 $\beta_0 + \beta_1 Turnout + \beta_2 Income + \beta_3 Pop. dens + \beta_4 Age + \beta_5 2016 + \beta_6 2020$ 

# Models

| Objective | Model                             | Covariate                                                    | Feature                               |
|-----------|-----------------------------------|--------------------------------------------------------------|---------------------------------------|
| 2         | Null model                        | Turnout, Income, Pop. dens, Age                              | No fixed effects                      |
| 3         | Full model                        | <mark>Year, State</mark> , Turnout, Income, Pop.dens,<br>Age | Fixed election year & state<br>effect |
|           | By Election Year model (no state) | Year, Turnout, Income, Pop. dens, Age                        | Only fixed election year<br>effect    |
|           | By State model (no election year) | State, Turnout, Income, Pop.dens, Age                        | Only fixed state effect               |

• Objective 2: based on Null model



Question: test if  $\beta_0$  is significantly different from 0

- Objective 3: compare three models
  - Use <u>DIC/WAIC</u> metrics
  - Analogous to overall F-test

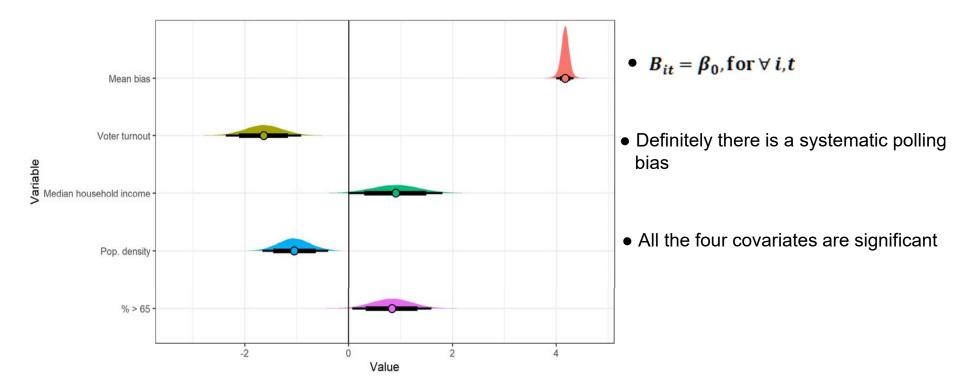
Questions:

(i) Are all coefficients of state predictors equal to 0?

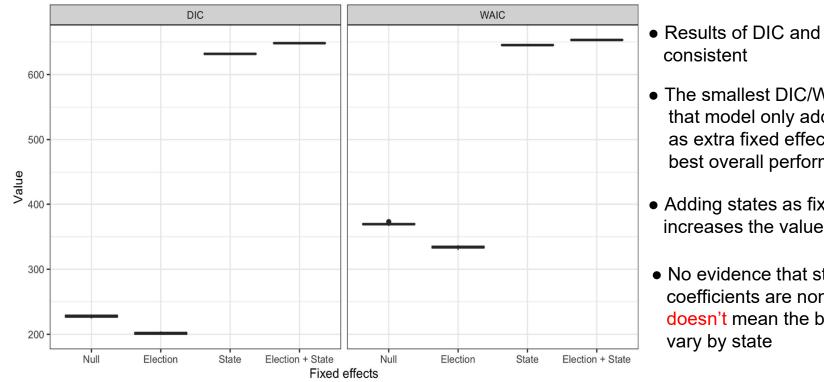
(ii) Are all coefficients of election year predictors equal to 0?

# **Results for objective 2**

Is there a systematic polling bias if assuming bias is constant over state and election?



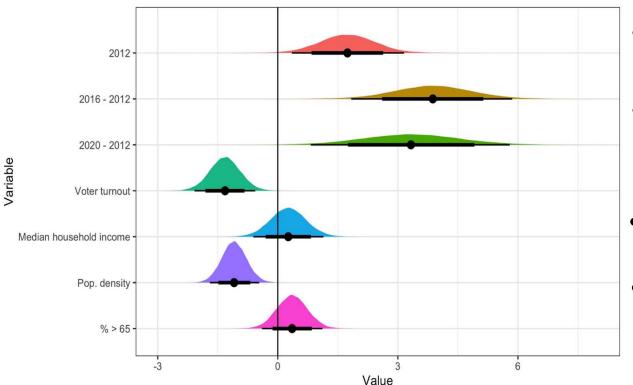
# **Results for objective 3**



Does the bias vary by state and/or election?

- Results of DIC and WAIC are
- The smallest DIC/WAIC indicates that model only adds 3 elections as extra fixed effects has the best overall performance
- Adding states as fixed effects increases the value of DIC/WAIC
- No evidence that state-level coefficients are non-zero, which doesn't mean the bias doesn't

# **Results for objective 3**

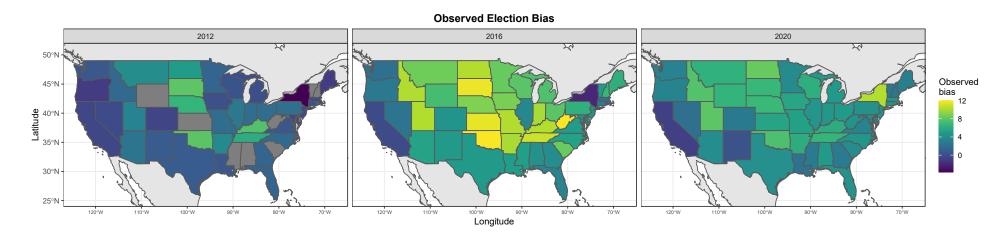


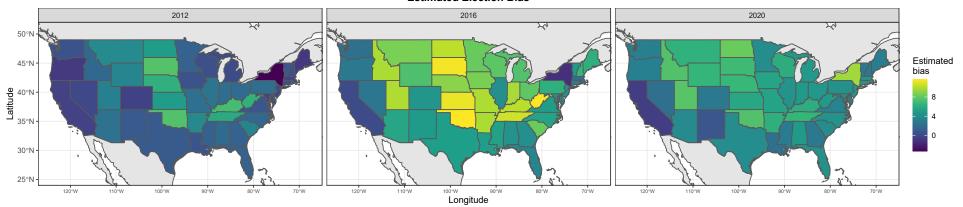
Does the bias vary by state and/or election?

- The bias in 2016 & 2020 are calculated based on the bias in 2012
- There is strong evidence that the bias varies by election; the bias that underestimating the GOP support increases these years
- This time median income and age are no longer significant covariates
- Most interesting thing: it seems like the more people vote, the less bias in the election results

#### Election State Election + State Variable nu2 - 🔶 O $\psi_{{\scriptscriptstyle k}{\scriptscriptstyle t}}$ Election Election + State Min -8.23 -0.2 5.15 Max 0.25 tau2 -30 0 20 20 10 30 0 10 10 20 30 0 Value $g(\mu_{kt}) = x_{kt}^T \beta + \psi_{kt}$ State/Election + State Model Covariates (fixed) **Election Model Covariates (fixed)** • Intercept • Turnout Intercept • Turnout • Arizona 2016 HH income 2016 HH income ۰ • ٠ . . . % > 65 yrs % > 65 yrs • 2020 • 2020 ٠ Wyoming ٠

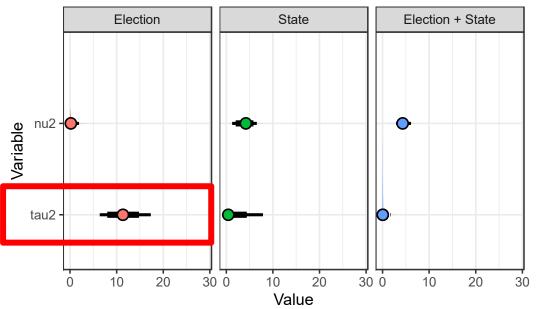
# Part 3: Closer Look





**Estimated Election Bias** 

# Part 3: Closer Look



#### **Election Model Covariates (fixed)**

- Intercept
   Turnout
- 2016 HH income
- 2020 % > 65 yrs
- $g(\mu_{kt}) = x_{kt}^T \beta + \psi_{kt}$

#### State/Election + State Model Covariates (fixed)

• Intercept •

2016

- Turnout
   HH incor
  - HH income
    - ne ...

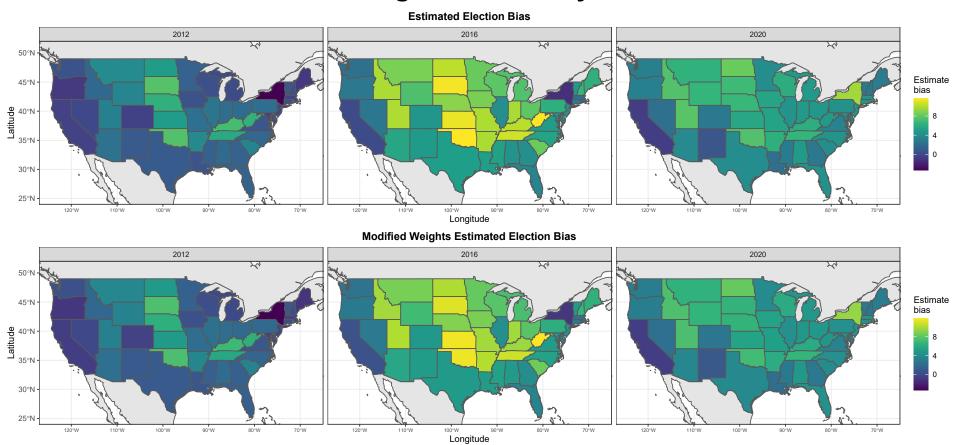
•

- 2020 % > 65 yrs ●
- Wyoming

Arizona

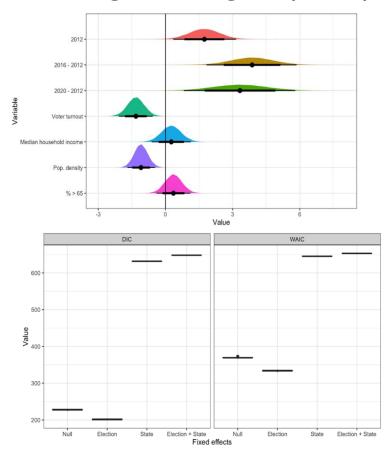
# Conclusions

- Part 2: Assuming constant bias across all states and elections, consistent underestimation of GOP
- > Part 3:
  - Underestimation of GOP, magnitude varied by year
  - > By state: It's complicated!
    - No evidence of difference among states when considered individually (as fixed effects)
    - BUT we conclude that there ARE differences among states
    - Bias varies among states in a clustered way

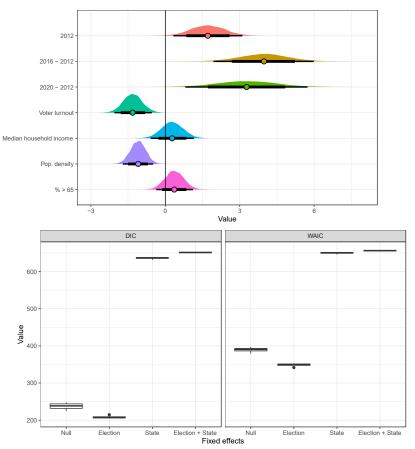


# **Weights Sensitivity**

# **Original Weights (50/50)**

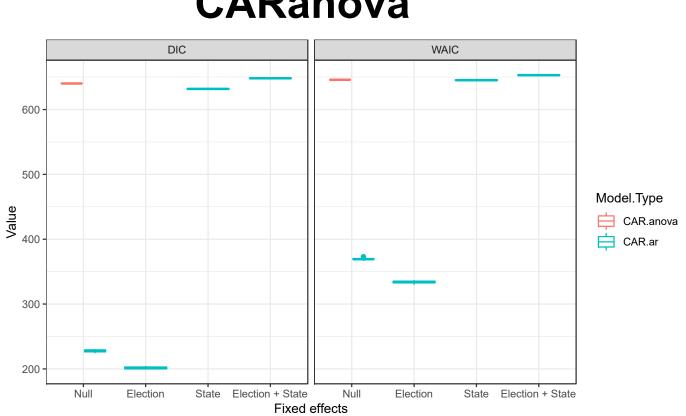


# Modified Weights (70/30)



Variable

# Thank you for listening! Questions?



# **CARanova**