Multivariate spatial analysis

Applied Spatial Statistics
Multivariate spatial data

- Say Y_{ik} is the observed value of response type k at location s_i

- Example: Y_{i1} is the temperature in Raleigh (s_i)

- Example: Y_{i2} is the humidity in Raleigh (s_i)

- This is an example of a multivariate spatial process

- There can be K response types, and they can be measured at different locations
Objectives

- Test for cross-correlation between responses
- Exploit cross-correlation to improve prediction
General model

- As for univariate spatial data, we decompose the data into a mean, correlated residuals and uncorrelated residuals

\[Y_{ik} = \mu_{ik} + Z_{ik} + \varepsilon_{ik} \]

- The mean is \(\mu_{ik} = \beta_{0k} + \sum_{j=1}^{p} X_{ik} \beta_{jk} \)

- \(Z_{ik} \) is correlated across space and responses

- The nugget is \(\varepsilon_{ik} \sim \text{Normal}(0, \tau_{k}^2) \), independent over \(i \) and \(k \)
Types of dependence

- The responses each have spatial covariance, $\text{Cov}(Y_{ik}, Y_{jk}) = \sigma_k^2 \rho_k (d_{ij})$

- There is also cross-covariance $\text{Cov}(Y_{ik}, Y_{ij}) = \sigma_{jk}$

- The cross-correlation can be positive or negative, but the $K \times K$ matrix of σ_{jk} must be a valid covariance matrix

- Different response types at different locations can be correlated

- The correlation is a user-defined function of σ_{jk}, ρ_j and ρ_k
Exploratory analysis

- First fit least squares regression to remove the mean trend for each response type
- Using the residuals, plot the semivariogram at each response type to select a spatial correlation model
- Use a cross-variogram to explore cross dependence
Cross-variogram

- The variogram for response type \(k \) is

\[2\gamma_k(d_{ij}) = \mathbb{E}(Y_{ik} - Y_{jk})^2 \]

- The cross-variogram (assuming constant mean) for response types \(k \) and \(l \) is

\[2\gamma_{kl}(d_{ij}) = \mathbb{E}(Y_{ik} - Y_{jk})(Y_{il} - Y_{jl}) \]

- If both processes are strongly spatially correlated (e.g., no nugget) then \(\gamma_{kl}(0) \approx 0 \)

- For \(d_{ij} \) larger than the range of either process,

\[\gamma_{kl}(d_{ij}) = \text{Cov}(Y_{ik}, Y_{il}) = \sigma_{kl} \]

- So the height of the plateau is the cross-covariance
Separable model

- The separable model assumes that all K response types have the same spatial correlation function, $\rho(d)$.

- In this case, the covariance separates as

 \[\text{Cov}(Y_{ik}, Y_{jl}) = \sigma_{kl} \cdot \rho(d_{ij}) \]

- Separability dramatically simplifies the analysis, but is often unrealistic.
Linear model of coregionalization (LMC)

► Example: Y_{ik} is air pollution of type k

► The latent (unobserved) factors F_{i1} and F_{i2} are emissions from cars and power plants

► The loadings L_{k1} and L_{k2} determine how much each type of emission contributes to pollutant k

► Pollutants with common sources are correlated
The example to follow has two latent factors: F_1 is road emissions and F_2 is power plant emissions.

There are $K = 3$ pollutants.

The loading matrix is

$$L = \begin{bmatrix}
5 & 5 \\
5 & 1 \\
1 & 5
\end{bmatrix}$$

Pollutant 1 is an equal mix; pollutant 2 is mostly road; pollutant 3 is mostly power plants.
LMC - latent factor 1

![Image](image.png)
LMC - latent factor 2
LMC - response $Y_1 = 5F_1 + 5F_2$
LMC - response $Y_2 = 5F_1 + 1F_2$
LMC - response $Y_3 = 1F_1 + 5F_2$
Linear model of coregionalization (LMC)

- It is basically factor analysis for spatial data
- Let F_{i1}, \ldots, F_{iK} be independent spatial processes with spatial correlation functions ρ_1, \ldots, ρ_K
- The response is modeled as
 $$Y_{ik} = \sum_{u=1}^{K} L_{ku} F_{iu}$$
- The (non-separable) cross-covariance is
 $$\text{Cov}(Y_{ik}, Y_{jl}) = \sum_{u=1}^{L} L_{ku} L_{lu} \rho_u(d_{ij})$$
Linear model of coregionalization (LMC)

▶ Say the loading matrix is

\[L = \begin{bmatrix} 5 & 5 \\ 5 & 1 \\ 1 & 5 \end{bmatrix} \]

▶ The cross-covariance is

\[\text{Cov}(Y_{i1},...,Y_{iK}) = LL^T = \begin{bmatrix} 50 & 30 & 30 \\ 30 & 26 & 10 \\ 30 & 10 & 26 \end{bmatrix} \]

▶ The cross-correlation is

\[\text{Cor}(Y_{i1},...,Y_{iK}) = \begin{bmatrix} 1.00 & 0.83 & 0.83 \\ 0.83 & 1.00 & 0.38 \\ 0.83 & 0.38 & 1.00 \end{bmatrix} \]
Co-Kriging

As with spatiotemporal data, the Kriging equations apply for multivariate spatial data.

This requires estimating all parameters in the spatial correlation functions and the cross-correlation function.

Kriging with multiple responses is called cokriging.
Software options

- The `spBayes` function `spMvLM` fits a separable model using MCMC.

- The package `gstat` estimates parameters in the LMC using variograms.